精英家教网 > 高中数学 > 题目详情
7.实数x,y满足$\left\{\begin{array}{l}{x-y+1≥0}\\{x≤1}\\{y≥a}\end{array}\right.$,若μ=2x-y的最小值为-4,则实数a等于(  )
A.-4B.-3C.-2D.6

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x≤1}\\{y≥a}\end{array}\right.$作出可行域如图,
联立$\left\{\begin{array}{l}{y=a}\\{x-y+1=0}\end{array}\right.$,解得:A(a-1,a),
化目标函数μ=2x-y为y=2x-μ,
由图可知,当直线y=2x-μ过A时,直线在y轴上的截距最大,μ有最小值为:2(a-1)-a=-4,
即a=-2.
故选:C.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知p:|x|≤2,q:0≤x≤2,则p是q的(  )条件.
A.充要B.充分不必要
C.必要不充分D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+2y≥0}\\{x-y≤0}\\{x-2y+2≥0}\end{array}\right.$,且z=$\frac{y}{x-a}$仅在点A(-1,$\frac{1}{2}$)处取得最大值,则实数a的取值范围为(  )
A.[-2,-1)B.(-∞,-1)C.(-2,-1)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=4,AB=2.
(1)证明:平面PAD⊥平面PCD;
(2)若F为PC上一点,满足BF⊥AC,求二面角F-AB-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若两条直线ax+2y-1=0与3x-6y-1=0垂直,则a的值为(  )
A.4B.-4C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.一个直三棱柱的三视图如图所示,则该三棱柱的体积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=|2x+3|+|2x-1|.
(Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若关于x的不等式f(x)≤|3m+1|有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知数列{an}的前n项和为Sn,若${S_n}={n^2}$,数列$\left\{{\frac{2}{{{a_n}{a_{n+1}}}}}\right\}$的前n项和Tn=(  )
A.$\frac{n}{2n+1}$B.$\frac{2n+2}{2n+1}$C.$\frac{2n}{2n+1}$D.$\frac{2n}{2n-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设集合A={x∈Z|x2≤4},B={x|x>-1},则A∩B=(  )
A.{0,1}B.{-1,0}C.{-1,0,1}D.{0,1,2}

查看答案和解析>>

同步练习册答案