精英家教网 > 高中数学 > 题目详情

【题目】某同学在研究函数(x∈R)时,分别给出下面几个结论:

①函数f(x)是奇函数;②函数f(x)的值域为(-1,1);③函数f(x)在R上是增函数;其中正确结论的序号是

A. ①② B. ①③ C. ②③ D. ①②③

【答案】D

【解析】函数的定义域是实数集, 函数是奇函数,故 正确 ,故正确 函数上可化为, 奇函数上是增函数, 在其定义域内是增函数,故正确故选D.

方法点睛】本题主要通过对多个命题真假的判断,主要综合考查函数的单调性、函数的奇偶性、函数值域属于难题. 这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输因此做这类题目更要细心、多读题尽量挖掘出题目中的隐含条件,另外要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知菱形 ABCD 中,对角线 AC 与 BD 相交于一点 O,∠A=60°,将△BDC 沿着 BD 折起得△BDC',连结 AC'.
(Ⅰ)求证:平面 AOC'⊥平面 ABD;
(Ⅱ)若点 C'在平面 ABD 上的投影恰好是△ABD 的重心,求直线 CD 与底面 ADC'所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体中,M,N,E,F分别是棱A1B1,A1D1,B1C1,C1D1的中点,求证:平面AMN∥平面EFDB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从6名男生和4名女生中任选4人参加比赛,设被选中女生的人数为随机变量ξ,求:
(Ⅰ)ξ的分布列;
(Ⅱ)所选女生不少于2人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中.

图(1图(2

(Ⅰ)如图(1)求与平面所成的角

(Ⅱ)如图(2)求证: ∥平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥C﹣OAB中,CO⊥平面AOB,OA=OB=2OC=2,AB=2 ,D为AB的中点.
(Ⅰ)求证:AB⊥平面COD;
(Ⅱ)若动点E满足CE∥平面AOB,问:当AE=BE时,平面ACE与平面AOB所成的锐二面角是否为定值?若是,求出该锐二面角的余弦值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx= ,若f1-x=f1+x),且f0=3.

(Ⅰ)求bc的值;

(Ⅱ)试比较m∈R)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资根据长期收益率市场预测投资类产品的收益与投资额成正比投资类产品的收益与投资额的算术平方根成正比已知投资1万元时两类产品的收益分别为0125万元和05万元

1分别写出两类产品的收益与投资额的函数关系;

2该家庭有20万元资金全部用于理财投资问:怎么分配资金能使投资获得最大收益其最大收益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,给出下列结论:

(1)若对任意,且,都有,则为R上的减函数;

(2)若为R上的偶函数,且在内是减函数, (-2)=0,则>0解集为(-2,2);

(3)若为R上的奇函数,则也是R上的奇函数;

(4)t为常数,若对任意的,都有关于对称。

其中所有正确的结论序号为_________

查看答案和解析>>

同步练习册答案