精英家教网 > 高中数学 > 题目详情
已知A={x|x2-2x-3≤0,x∈R},B={x|m-3≤x≤m+3,m∈R}.
(Ⅰ)若A∪B={x|-1≤x≤6},求实数m的值;
(Ⅱ)若“x∈A”是“x∈B”的充分不必要条件,求实数m的取值范围.
考点:必要条件、充分条件与充要条件的判断,并集及其运算
专题:简易逻辑
分析:(Ⅰ)根据集合的基本运算,即可求实数m的值;
(Ⅱ)利用充分条件和必要条件的定义和集合之间的关系即可得到结论.
解答: 解:(Ⅰ)由题设得:A={x|x2-2x-3≤0,x∈R}={x|-1≤x≤3},B={x|m-3≤x≤m+3,m∈R}.
因为A∪B={x|-1≤x≤6},
-1≤m-3≤3
m+3=6
,即
2≤m≤6
m=3

所以m=3.
(Ⅱ)因为“x∈A”是“x∈B”的充分不必要条件,
m-3≤-1
m+3≥3
,即
m≤2
m≥0

解得0≤m≤2,
经检验①②不会同时成立,
所以0≤m≤2.
点评:本题主要考查集合的基本运算以及充分条件和必要条件的应用,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1+a2=10,a2+a3=15,则an=(  )
A、4×(
3
2
)n
B、4×(
2
3
)n
C、4×(
2
3
)n-1
D、4×(
3
2
)n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的首项a1=1,公差d>0,其前n项和为Sn,数列{bn}是等比数列,且b1=a2,b2=a5,b3=a14
(1)求数列{an}和{bn}的通项公式;
(2)若数列{cn}满足
c1
b1
+
c2
b2
+…+
cn
bn
=Sn(n∈N*),求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|y=
36-x2
},B={β|2kx-
π
3
<β<2kx+
π
3
,k∈Z},求A∩B,A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数
logax,x≥1
(3a-1)x+4a,x<1
为区间(-∞,+∞)上单调减函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)在R上的导函数是f′(x),若f(x)=f(4-x),且当x∈(-∞,2)时,(x-2)•f′(x)<0.角A、B、C是锐角△ABC的三个内角,下面给出四个结论:
(1)f(sin
3
)>f(cos
4
)
;     
(2)f(2log23)<f(log0.50.1);
(3)f(sinA+sinB)>f(cosA+cosB);
(4)f(sinB-cosB)>f(cosA-sinC);
则上面这四个结论中一定正确的有(  )个.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为棱DD1和AB上的点,则下列说法正确的是
 
.(填上所有正确命题的序号)
①A1C⊥平面B1EF
②在平面A1B1C1D1内总存在与平面B1EF平行的直线;
③△B1EF在侧面BCC1B1上的正投影是面积为定值的三角形;
④当E,F为中点时,平面B1EF截该正方体所得的截面图形是六边形;
⑤当DE=
2
3
,AF=
1
2
时,平面B1EF与棱AD交于点P,则AP=
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的首项为a1=2,2n2-(t+bn)n+
3
2
bn=0(t∈R,n∈N*)
.公比为q(q为正整数),且满足3a3是8a1与a5的等差中项;数列{bn}满足
(1)求数列{an}的通项公式;
(2)试确定t的值,使得数列{bn}为等差数列;
(3)当{bn}为等差数列时,对每个正整数k,在ak与ak+1之间插入bk个2,得到一个新数列{cn}.设Tn是数列{cn}的前n项和,试求满足Tm=2cm+1的所有正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

设O为坐标原点,点M(1,1),若N(x,y)满足
x-4y+3≤0
2x+y-12≤0
x≥1
.则
OM
ON
的最大值是
 

查看答案和解析>>

同步练习册答案