精英家教网 > 高中数学 > 题目详情

设a为实数,函数f(x)=ex-2x+2a,x∈R.
(1)求f(x)的单调区间及极值;
(2)求证:当a>ln2-1且x >0时,ex>x2-2ax+1

(1)     (2)见解析

解析试题分析:(1)首先求出的导数,解方程,进一步得到不等式的解集,从而得到函数的单调区间和极值.
(2)欲证当a>ln2-1且x >0时,ex>x2-2ax+1,

则只需证当时,
从而转化为利用导数求的最小值问题.
试题解析:解:(1)由
于是当变化时,的变化情况如下表:







0
+

单调递减

单调递增
 
的单调递减区间是,间调递增区间是
处取得极小值,极小值为                  6分
(2)设,于是
由(1)知,当时,
最小值为
于是对任意的,都有,所以内单调递增.
于是当时,对任意
都有
,从而对任意
即:故,            14分
考点:1、导数在研究函数性质中的应用;2、等价转论的思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax--3ln x,其中a为常数.
(1)当函数f(x)的图象在点处的切线的斜率为1时,求函数f(x)在上的最小值;
(2)若函数f(x)在区间(0,+∞)上既有极大值又有极小值,求a的取值范围;
(3)在(1)的条件下,过点P(1,-4)作函数F(x)=x2[f(x)+3lnx-3]图象的切线,试问这样的切线有几条?并求出这些切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当a=2时,求函数y=f(x)的图象在x=0处的切线方程;
(2)判断函数f(x)的单调性;
(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=lnx+ax+1,a∈R.
(1)求f(x)在x=1处的切线方程.
(2)若不等式f(x)≤0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求曲线在点处的切线方程;
(2)若在区间上是减函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=x2+aln(x+1)有两个极值点x1,x2,且x1<x2.
(1)求实数a的取值范围;
(2)当a=时,判断方程f(x)=-的实数根的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数时都取得极值.
(1)求的值及的极大值与极小值;
(2)若方程有三个互异的实根,求的取值范围;
(3)若对,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)若存在单调递减区间,求实数的取值范围;
(2)若,求证:当时,恒成立;
(3)利用(2)的结论证明:若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=x3x2+6xa.
(1)对于任意实数xf′(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且仅有一个实根,求a的取值范围.

查看答案和解析>>

同步练习册答案