精英家教网 > 高中数学 > 题目详情
在一次物理竞赛中,学生成绩均在内[50,100),相应的频率分布直方图如图,已知成绩在[60,70)的学生有40人,则成绩在[70,90)的人数为(  )
A、20B、22C、25D、26
考点:频率分布直方图
专题:概率与统计
分析:根据频率分布直方图,求出样本容量,再求出成绩在[70,90)的人数.
解答: 解:根据频率分布直方图,得;
学生总人数是
40
0.04×10
=100;
∴成绩在[70,90)的人数为
(0.01+0.015)×10×100=25.
故选:C.
点评:本题考查了频率分布直方图的应用问题,解题时应根据频率、频数与样本容量的关系进行解答,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,正六边形ABCDEF的边长为1,则
AD
DB
=(  )
A、-3
B、-
3
C、3
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={1,2,3}的非空真子集个数是(  )
A、6B、7C、8D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知向量
AC
AB
AD
的和向量,
AC
=
a
DB
=
b
,且|
a
|=2,|
b
|=1,
a
b
的夹角为60°.
(1)求线段AB的长;
(2)过点C作CH⊥AB,垂足为H,若
AH
a
b
(λ,μ∈R),试求λ,μ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆
x2
m
+
y2
m-1
=1(2≤m≤5),过其左焦点且斜率为1的直线与椭圆及其准线交于A、B、C、D,设f (m)=||AB|-|CD||. 
(1)求直线AB的方程;
(2)求f(m)的解析式;
(3)求f(m)的最大、最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a=
424
,b=
312
,c=
6
,则a,b,c的大小关系是(  )
A、a>b>c
B、b<c<a
C、b>c>a
D、a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在直角坐标系的原点、焦点在x轴上的椭圆C,其长轴的长为6,点F1,F2为椭圆C的左、右焦点,点P为该椭圆上的动点,且△F1PF2 面积的最大值为2
5

(1)求椭圆C的方程;
(2)求
1
PF
2
1
+
1
PF
2
2
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x)=
-2x+b
2x+1+a

(1)求a,b的值;
(2)若不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
对一切实数x及m恒成立,求实数k的取值范围;
(3)定义:若存在一个非零常数T,使得f(x+T)=f(x)对定义域中的任何实数x都恒成立,那么,我们把f(x)叫以T为周期的周期函数,它特别有性质:对定义域中的任意x,f(x+nT)=f(x),(n∈Z).若函数g(x)是定义在R上的周期为2的奇函数,切当x∈(-1,1)时,g(x)=f(x)-x,求方程g(x)=0的所有解.

查看答案和解析>>

科目:高中数学 来源: 题型:

若抛物线y2=2px的焦点与椭圆
x2
6
+
y2
2
=1
的右焦点重合,则p的值为(  )
A、-2B、2C、-4D、4

查看答案和解析>>

同步练习册答案