精英家教网 > 高中数学 > 题目详情

【题目】在正方体ABCD-A1B1C1D1中,如图.

1求证:平面AB1D1∥平面C1BD;

2试找出体对角线A1C与平面AB1D1和平面C1BD的交点E,F,并证明:A1E=EF=FC.

【答案】略

【解析】证明:1因为在正方体ABCD-A1B1C1D1中,ADB1C1,所以四边形AB1C1D是平行四边形,所以AB1∥C1D.又因为C1D平面C1BD,AB1平面C1BD,所以AB1∥平面C1BD.同理,B1D1∥平面C1BD.又因为AB1∩B1D1=B1,AB1平面AB1D1,B1D1平面AB1D1,所以平面AB1D1∥平面C1BD.

2如图,设A1C1与B1D1交于点O1,连接AO1,与A1C交于点E.

因为AO1平面AB1D1

所以点E也在平面AB1D1内,所以点E就是A1C与平面AB1D1的交点.

连接AC交BD于O,连接C1O与A1C交于点F,则点F就是A1C与平面C1BD的交点.

下面证明A1E=EF=FC.

因为平面A1C1CA∩平面AB1D1=EO1,平面A1C1CA∩平面C1BD=C1F,平面AB1D1∥平面C1BD,所以EO1∥C1F.

在△A1C1F中,O1是A1C1的中点,所以E是A1F的中点,

即A1E=EF.同理CF=FE,所以A1E=EF=FC.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +alnx﹣2,曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+3垂直.
(1)求实数a的值;
(2)记g(x)=f(x)+x﹣b(b∈R),若函数g(x)在区间[e﹣1 , e]上有两个零点,求实数b的取值范围;
(3)若不等式πf(x)>( 1+x﹣lnx在|t|≤2时恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求与点P(3,5)关于直线l:x-3y+2=0对称的点P′的坐标.(2)已知直线l:y=-2x+6和点A(1,-1),过点A作直线l1与直线l相交于B点,且|AB|=5,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M过点A(1,3),B(4,2),且圆心在直线y=x﹣3上.
(Ⅰ)求圆M的方程;
(Ⅱ)若过点(﹣4,1)的直线l与圆M相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的个数是( )

①若直线l上有无数个点不在平面α内,则l∥α

②若直线l与平面α平行,则l与平面α内的任意一条直线都平行

③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行

④若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点.

A.0 B.1

C.2 D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产一种产品的固定成本(即固定投入)为0.5万元,但每生产一百件这样的产品,需要增加可变成本(即另增加投入)0.25万元. 市场对此产品的年需求量为500件,销售的收入函数为= (单位:万元),其中是产品售出的数量(单位:百件).

(1)该公司这种产品的年产量为百件,生产并销售这种产品所得到的利润为当年产量的函数,求;

(2)当年产量是多少时,工厂所得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】环境监测中心监测我市空气质量,每天都要记录空气质量指数(指数采取10分制,保留一位小数).现随机抽取20天的指数(见下表),将指数不低于8.5视为当天空气质量优良.

天数

1

2

3

4

5

6

7

8

9

10

空气质量指数

7.1

8.3

7.3

9.5

8.6

7.7

8.7

8.8

8.7

9.1

天数

11

12

13

14

15

16

17

18

19

20

空气质量指数

7.4

8.5

9.7

8.4

9.6

7.6

9.4

8.9

8.3

9.3

(Ⅰ)求从这20天随机抽取3天,至少有2天空气质量为优良的概率;
(Ⅱ)以这20天的数据估计我市总体空气质量(天数很多).若从我市总体空气质量指数中随机抽取3天的指数,用X表示抽到空气质量为优良的天数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资根据长期收益率市场预测投资类产品的收益与投资额成正比投资类产品的收益与投资额的算术平方根成正比已知投资1万元时两类产品的收益分别为0125万元和05万元

1分别写出两类产品的收益与投资额的函数关系;

2该家庭有20万元资金全部用于理财投资问:怎么分配资金能使投资获得最大收益其最大收益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人独立地对某一技术难题进行攻关.甲能攻克的概率为 ,乙能攻克的概率为 ,丙能攻克的概率为
(1)求这一技术难题被攻克的概率;
(2)若该技术难题末被攻克,上级不做任何奖励;若该技术难题被攻克,上级会奖励a万元.奖励规则如下:若只有1人攻克,则此人获得全部奖金a万元;若只有2人攻克,则奖金奖给此二人,每人各得 万元;若三人均攻克,则奖金奖给此三人,每人各得 万元.设甲得到的奖金数为X,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案