精英家教网 > 高中数学 > 题目详情

【题目】已知函数 .

(1)当时,求函数的最大值;

(2)若,且对任意的 恒成立,求实数的取值范围.

【答案】(1)0;(2) .

【解析】试题分析:(1)求出函数的导数,得到函数的单调区间,求出函数的最大值即可;

(2)令(x)=f(x)+1,根据函数的单调性分别求出φ(x)的最小值和g(x)的最大值,得到关于m的不等式,解出即可.

试题解析:

(1)函数的定义域为

时,

∴当时, ,函数上单调递增,

∴当时, ,函数上单调递减,

.

(2)令,因为“对任意的 恒成立”,

所以对任意的 成立,由于

时,对,从而函数上单调递增,

所以

时, 时, ,显然不满足

时,令

①当,即时,在,所以上单调递增,所以,只需,得,所以.

②当,即时,在 单调递增,在 单调递减,所以,只需,得,所以.

③当,即时,显然在 单调递增,所以 不成立.

综上所述, 的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】观察图,则第几行的各数之和等于20172
A.2017
B.2015
C.1008
D.1009

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ax﹣lnx,x∈(0,e],其中e是自然常数,a∈R.
(1)当a=1时,求f(x)的单调区间和极值;
(2)是否存在实数a,使f(x)的最小值是3,若存在,求出a的值;若不存在,说明理由.
(3)证明:(1﹣ )( )( )…( )<e33n

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个匀速旋转的摩天轮每12分钟转一周,最低点距地面2米,最高点距地面18米,P是摩天轮轮周上一定点,从P在最低点时开始计时,则14分钟后P点距地面的高度是米.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某正弦交流电的电压v(单位V)随时间t(单位:s)变化的函数关系是v=120 sin(100πt﹣ ),t∈[0,+∞).
(1)求该正弦交流电电压v的周期、频率、振幅;
(2)若加在霓虹灯管两端电压大于84V时灯管才发光,求在半个周期内霓虹灯管点亮的时间?( 取 ≈1.4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b∈R+ , m,n∈N* . (Ⅰ)求证:(an+bn)(am+bm)≤2(am+n+bm+n);
(Ⅱ)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 .

1)当时, 上恒成立,求实数的取值范围;

2)当时,若函数上恰有两个不同的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解学生寒假期间学习情况,学校对某班男、女学生学习时间进行调查,学习时间按整小时统计,调查结果绘成折线图如下:

I)已知该校有名学生,试估计全校学生中,每天学习不足小时的人数.

II)若从学习时间不少于小时的学生中选取人,设选到的男生人数为,求随机变量的分布列.

III)试比较男生学习时间的方差与女生学习时间方差的大小.(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 是椭圆上的两点,椭圆的离心率为,短轴长为2,已知向量 ,且 为坐标原点.

(1)若直线过椭圆的焦点,( 为半焦距),求直线的斜率的值;

(2)试问: 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

同步练习册答案