精英家教网 > 高中数学 > 题目详情
11.为了得到函数$y=3sin({\frac{1}{2}x-\frac{π}{5}})$,x∈R的图象,只需把函数$y=3sin({\frac{1}{2}x+\frac{π}{5}})$的图象上所有点(  )
A.向左平行移动$\frac{2π}{5}$个单位长度B.向右平行移动$\frac{2π}{5}$个单位长度
C.向左平行移动$\frac{4π}{5}$个单位长度D.向右平行移动$\frac{4π}{5}$个单位长度

分析 利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:把函数$y=3sin({\frac{1}{2}x+\frac{π}{5}})$=3sin[$\frac{1}{2}$(x+$\frac{2π}{5}$)的图象上所有点向右平行移动$\frac{4π}{5}$个单位长度,
可得y=3sin[$\frac{1}{2}$(x-$\frac{4π}{5}$+$\frac{2π}{5}$)]=3sin($\frac{1}{2}$x-$\frac{π}{5}$)的图象,
故选:D.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~250为重度污染;>300为严重污染.一环保人士记录2017年某地某月10天的AQI的茎叶图如图.
(1)利用该样本估计该地本月空气质量优良(AQI≤100)的天数;
(按这个月总共30天计算)
(2)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为ξ,求ξ的概率分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=3sin({\frac{1}{2}x-\frac{π}{4}})$,x∈R.
(1)用五点作图法画出函数f(x)在$[{\frac{π}{2},\frac{9π}{2}}]$上的简图;
(2)若$f(α)=\frac{3}{2}$,$α∈[{\frac{π}{2},\frac{9π}{2}}]$,求α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在党的群众交流路线总结阶段,一督导组从某单位随机抽调25名员工,让他们对单位的各项开展公国进行打分评价,现获得如下数据:70,82,81,76,84,77,77,65,85,69,83,71,76,89,74,73,83,78,82,72,86,79,76
(1)根据上述数据完成样本的频率分布表;
分组频数频率
[65,70]30.12
(70,75]50.20
(75,80]80.32
(80,85]70.28
(85,90]20.08
(2)根据(1)的频率分布表,完成样本频率分布直方图
(3)从区间[65,70]和(85,90]中任意抽取两个评分,求两个评分来自不同区间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=alnx+bx2的图象在点(1,f(1))处的切线方程为x-y-1=0,g(x)=2af(x+t),t∈R且t≤2.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求证:g(x)<ex+f(x+t).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知α,β是两个不同平面,给出下列四个条件:
①存在一条直线a,a⊥α,a⊥β;
②存在一个平面γ,γ⊥α,γ⊥β;
③存在两条平行直线a,b,a∥α,b∥β,a∥β,b∥α;
④存在两条异面直线a,b,a?α,b?β,a∥β,b∥α.
其中可以推出α∥β的是(  )
A.①③B.①④C.②④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数y=lg(ax2-ax+1)的值域为R,则实数a的取值范围是[4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.执行如图所示的程序框图,则输出的i=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在同一个球面上,则该球的内接正方体的表面积为(  )
A.$\frac{19}{6}$B.$\frac{38}{3}$C.$\frac{57}{8}$D.$\frac{19}{3}$

查看答案和解析>>

同步练习册答案