精英家教网 > 高中数学 > 题目详情
(2009•聊城二模)若a是从区间[0,3]内任取一个实数,b是从区间[0,2]内任取一个实数,则关于x的一元二次方程x2-2ax+b2=0有实根的概率为
2
3
2
3
分析:本题考查的知识点是几何概型的意义,关键是要找出(a,b)对应图形的面积,及满足条件“关于x的一元二次方程x2-2ax+b2=0有实根”的点对应的图形的面积,然后再结合几何概型的计算公式进行求解.
解答:解:如下图所示:试验的全部结果所构成的区域为{(a,b)|0≤a≤3,0≤b≤2}(图中矩形所示).其面积为6.
构成事件“关于x的一元二次方程x2-2ax+b2=0有实根”的区域为
{(a,b)|0≤a≤3,0≤b≤2,a≥b}(如图阴影所示).
所以所求的概率为P=
3×2- 
1
2
×22
3×2
=
2
3

故答案为:
2
3
点评:几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=N(A)/N求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•聊城二模)已知函数f(x)=lnx+
1-xax
,其中a为大于零的常数.
(1)若函数f(x)在区间[1,+∞)内单调递增,求a的取值范围;
(2)求函数f(x)在区间[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•聊城二模)在R上定义运算△:x△y=x(1-y) 若不等式(x-a)△(x+a)<1,对任意实数x恒成立,则实数a的取值范围是
(-
1
2
3
2
)
(-
1
2
3
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•聊城二模)若sin(
π
6
-α)=
1
3
,则cos(
3
+2α)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•聊城二模)已知关于x的不等式|3x-1|<a有唯一的整数解,则方程(1-|2x-1|)ax=1实数根的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•聊城二模)已知函数f(x)=lnx+
1-x
ax
,其中a
为大于零的常数.
(1)若函数f(x)在区间[1,+∞)内调递增,求a的取值范围;
(2)求函数f(x)在区间[1,2]上的最小值;
(3)求证:对于任意的n∈N*,且n>1时,都有lnn>
1
2
+
1
3
+…+
1
n
成立.

查看答案和解析>>

同步练习册答案