精英家教网 > 高中数学 > 题目详情
如图,在三棱柱ABC-A1B1C1中,AB⊥侧面BB1C1C,已知BB1=2,AB=
2
,BC=1,∠BCC1=
π
3

(1)求证:C1B⊥平面ABC;
(2)试在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1
(I)证明:∵AB⊥侧面BB1C1C,∴AB⊥BC1
在△BC1C中,BC=1,CC1=BB1=2,∠BCC1=
π
3

由余弦定理得BC12=BC2+CC12-2BC•CC1COS
π
3
=12+22-2×1×2×
1
2
=3,∴BC1=
3

故有BC2+BC21=CC21,∴C1B⊥BC,
而BC∩AB=B且AB,BC?平面ABC,
∴C1B⊥平面ABC.
(II)如图所示:以线段BB1为直径画圆O,分别交线段CC1于点E、C1
下面说明点E、C1是上述所画的圆与线段CC1的交点.
①∵B1C1=OB1=1,∠OB1C1=
π
3
,∴△OB1C1是正三角形,∴OC1=1,即点C1在所画的圆上.
②作OK⊥CC1,垂足为K,取EK=KC1,则点E也在所画的圆上.
∵OE=OC1=1,∴点E也在所画的圆上.
∵CC1BB1,∴∠OBE=∠OB1C1=
π
3
,∴△OBE是正三角形,∴EB=1,
∴EB=BC=1,又∠BCE=
π
3
,∴△BCE为正三角形,∴CE=1,即E点是线段CC1的中点.
下面证明点E满足条件.
∵AB⊥侧面BB1C1C,B1E⊥BE,据三垂线定理可得B1E⊥AE.
故线段CC1的中点E即是要求的点.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

若将边长为2的正方形ABCD沿对角线BD折成一个直二面角,且EA⊥平面ABD,AE=a(如图).
(Ⅰ)若a=2
2
,求证:AB平面CDE;
(Ⅱ)求实数a的值,使得二面角A-EC-D的大小为60°.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点.
(I)求证:直线AE⊥平面A1D1E;
(II)求三棱锥A-A1D1E的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,ABCD-A1B1C1D1是正方体,点E,F分别是BB1,B1D1中点,求证:EF⊥DA1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,BC=BB1,D为AB的中点.
(1)求证:BC1⊥平面AB1C;
(2)求证:BC1平面A1CD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正方体ABCD-A1B1C1D1中,点P在侧面BCC1B1及其边界上运动,并且总是保持AP与BD1垂直,则动点P的轨迹为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四面体ABCD中,O、E分别为BD、BC的中点,且CA=CB=CD=BD=2,AB=AD=
2

(1)求证:AO⊥平面BCD;
(2)求异面直线AB与CD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,ABCD是梯形,ABCD,∠BAD=90°,PA⊥面ABCD,且AB=1,AD=1,CD=2,PA=3,E为PD的中点
(Ⅰ)求证:AE面PBC.
(Ⅱ)求直线AC与PB所成角的余弦值;
(Ⅲ)在面PAB内能否找一点N,使NE⊥面PAC.若存在,找出并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面ABCD是正方形,棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(1)证明:PA平面BDE;
(2)证明:平面BDE⊥平面PBC.

查看答案和解析>>

同步练习册答案