如图,在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=8,E是PB上任意一点,△AEC面积的最小值是3.
(1)求证:AC⊥DE;
(2)求四棱锥P-ABCD的体积.
(1)详见解析,(2).
【解析】
试题分析:(1)证明线线垂直,一般利用线面垂直性质与判定定理进行转化. 因为四边形ABCD是菱形,所以AC⊥BD.又因为PD⊥平面ABCD,所以PD⊥AC.因而AC⊥平面PDB,从而AC⊥DE.(2)设AC与BD相交于点F.连EF.由(1),知AC⊥平面PDB,所以AC⊥EF.所以S△ACE=AC·EF,因此△ACE面积最小时,EF最小,则EF⊥PB.由△PDB∽△FEB,解得PD=,因为PD⊥平面ABCD,所以VP—ABCD=S□ABCD·PD=×24×=.
(1)证明:连接BD,设AC与BD相交于点F.
因为四边形ABCD是菱形,所以AC⊥BD.
又因为PD⊥平面ABCD,AC平面ABCD,所以PD⊥AC.
而AC∩BD=F,所以AC⊥平面PDB.
E为PB上任意一点,DE平面PBD,所以AC⊥DE.
(2)连EF.由(1),知AC⊥平面PDB,EF平面PBD,所以AC⊥EF. S△ACE=AC·EF,在△ACE面积最小时,EF最小,则EF⊥PB.
S△ACE=3,×6×EF=3,解得EF=1.
由△PDB∽△FEB,得.由于EF=1,FB=4,,
所以PB=4PD,即.解得PD=
VP—ABCD=S□ABCD·PD=×24×=.
考点:线面垂直性质与判定定理,四棱锥体积
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com