【题目】在△ABC中,内角A,B,C所对的边长分别是a,b,c.
(1)若c=2, ,且△ABC的面积 ,求a,b的值;
(2)若sinC+sin(B﹣A)=sin2A,试判断△ABC的形状.
【答案】
(1)解:由余弦定理 及已知条件得,a2+b2﹣ab=4,
又因为△ABC的面积等于 ,所以 ,得ab=4.
联立方程组 解得a=2,b=2.
(2)解:由题意得:sinC+sin(B﹣A)=sin2A
得到sin(A+B)+sin(B﹣A)=sin2A=2sinAcoA
即:sinAcosB+cosAsinB+sinBcosA﹣cosBsinA=2sinAcoA
所以有:sinBcosA=sinAcosA,
当cosA=0时, ,△ABC为直角三角形
当cosA≠0时,得sinB=sinA,由正弦定理得a=b,
所以,△ABC为等腰三角形.
【解析】(1)根据余弦定理,得c2=a2+b2﹣ab=4,再由面积正弦定理得 ,两式联解可得到a,b的值;(2)根据三角形内角和定理,得到sinC=sin(A+B),代入已知等式,展开化简合并,得sinBcosA=sinAcosA,最后讨论当cosA=0时与当cosA≠0时,分别对△ABC的形状的形状加以判断,可以得到结论.
【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:.
科目:高中数学 来源: 题型:
【题目】设函数,,其中,.
(Ⅰ)若函数在处有极小值,求,的值;
(Ⅱ)若,设,求证:当时,;
(Ⅲ)若,,对于给定,,,,,其中,,,若.求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】滨湖区拟建一主题游戏园,该游戏园为四边形区域ABCD,其中三角形区城ABC为主题活动区,其中∠ACB=60°,∠ABC=45°,AB=12 m;AD、CD为游客通道(不考虑宽度),且∠ADC=120°,通道AD、CD围成三角形区域ADC为游客休闲中心,供游客休憩.
(1)求AC的长度;
(2)记游客通道AD与CD的长度和为L,求L的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设锐角△ABC的三内角A、B、C所对边的边长分别为a、b、c,且 a=1,B=2A,则b的取值范围为( )
A.( , )
B.(1, )
C.( ,2)
D.(0,2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂生产某种水杯,每个水杯的原材料费、加工费分别为30元、m元(m为常数,且2≤m≤3),设每个水杯的出厂价为x元(35≤x≤41),根据市场调查,水杯的日销售量与ex(e为自然对数的底数)成反比例,已知每个水杯的出厂价为40元时,日销售量为10个.
(1)求该工厂的日利润y(元)与每个水杯的出厂价x(元)的函数关系式;
(2)当每个水杯的出厂价为多少元时,该工厂的日利润最大,并求日利润的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一次猜奖游戏中,1,2,3,4四扇门里摆放了, , , 四件奖品(每扇门里仅放一件).甲同学说:1号门里是,3号门里是;乙同学说:2号门里是,3号门里是;丙同学说:4号门里是,2号门里是;丁同学说:4号门里是,3号门里是.如果他们每人都猜对了一半,那么4号门里是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面内三个向量: =(3,2), =(﹣1,2), =(4,1)
(1)若( +k )∥(2 ﹣ ),求实数k的值;
(2)设 =(x,y),且满足( + )⊥( ﹣ ),| ﹣ |= ,求 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com