精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,内角A,B,C所对的边长分别是a,b,c.
(1)若c=2, ,且△ABC的面积 ,求a,b的值;
(2)若sinC+sin(B﹣A)=sin2A,试判断△ABC的形状.

【答案】
(1)解:由余弦定理 及已知条件得,a2+b2﹣ab=4,

又因为△ABC的面积等于 ,所以 ,得ab=4.

联立方程组 解得a=2,b=2.


(2)解:由题意得:sinC+sin(B﹣A)=sin2A

得到sin(A+B)+sin(B﹣A)=sin2A=2sinAcoA

即:sinAcosB+cosAsinB+sinBcosA﹣cosBsinA=2sinAcoA

所以有:sinBcosA=sinAcosA,

当cosA=0时, ,△ABC为直角三角形

当cosA≠0时,得sinB=sinA,由正弦定理得a=b,

所以,△ABC为等腰三角形.


【解析】(1)根据余弦定理,得c2=a2+b2﹣ab=4,再由面积正弦定理得 ,两式联解可得到a,b的值;(2)根据三角形内角和定理,得到sinC=sin(A+B),代入已知等式,展开化简合并,得sinBcosA=sinAcosA,最后讨论当cosA=0时与当cosA≠0时,分别对△ABC的形状的形状加以判断,可以得到结论.
【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,其中.
)若函数处有极小值,求的值;
)若,设,求证:当时,
)若,对于给定,其中,若.求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】滨湖区拟建一主题游戏园,该游戏园为四边形区域ABCD,其中三角形区城ABC为主题活动区,其中∠ACB=60°,∠ABC=45°,AB=12 m;AD、CD为游客通道(不考虑宽度),且∠ADC=120°,通道AD、CD围成三角形区域ADC为游客休闲中心,供游客休憩.

(1)求AC的长度;
(2)记游客通道AD与CD的长度和为L,求L的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设锐角△ABC的三内角A、B、C所对边的边长分别为a、b、c,且 a=1,B=2A,则b的取值范围为(
A.(
B.(1,
C.( ,2)
D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正数的等比数列{an}中,a4与a14的等比中项为 ,则2a7+a11的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,

(1)求的单调区间;

(2)设函数,若存在,对任意的,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产某种水杯,每个水杯的原材料费、加工费分别为30元、m(m为常数,且2m3),设每个水杯的出厂价为x(35x41),根据市场调查,水杯的日销售量与ex(e为自然对数的底数)成反比例,已知每个水杯的出厂价为40元时,日销售量为10个.

(1)求该工厂的日利润y()与每个水杯的出厂价x()的函数关系式;

(2)当每个水杯的出厂价为多少元时,该工厂的日利润最大,并求日利润的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一次猜奖游戏中,1,2,3,4四扇门里摆放了 四件奖品(每扇门里仅放一件).甲同学说:1号门里是,3号门里是;乙同学说:2号门里是,3号门里是;丙同学说:4号门里是,2号门里是;丁同学说:4号门里是,3号门里是.如果他们每人都猜对了一半,那么4号门里是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面内三个向量: =(3,2), =(﹣1,2), =(4,1)
(1)若( +k )∥(2 ),求实数k的值;
(2)设 =(x,y),且满足( + )⊥( ),| |= ,求

查看答案和解析>>

同步练习册答案