精英家教网 > 高中数学 > 题目详情

【题目】市场份额又称市场占有率,它在很大程度上反映了企业的竞争地位和盈利能力,是企业非常重视的一个指标.近年来,服务机器人与工业机器人以迅猛的增速占领了中国机器人领域庞大的市场份额,随着“一带一路”的积极推动,包括机器人产业在内的众多行业得到了更广阔的的发展空间,某市场研究人员为了了解某机器人制造企业的经营状况,对该机器人制造企业2017年1月至6月的市场份额进行了调查,得到如下资料:

月份

1

2

3

4

5

6

市场份额

11

163

16

15

20

21

请根据上表提供的数据,用最小二乘法求出关于的线性回归方程,并预测该企业2017年7月份的市场份额.

如图是该机器人制造企业记录的2017年6月1日至6月30日之间的产品销售频数(单位:天)统计图.设销售产品数量为,经统计,当时,企业每天亏损约为200万元;

时,企业平均每天收入约为400万元;

时,企业平均每天收入约为700万元.

①设该企业在六月份每天收入为,求的数学期望;

②如果将频率视为概率,求该企业在未来连续三天总收入不低于1200万元的概率.

附:回归直线的方程是,其中

【答案】(1);预测该企业2017年7月份的市场份额为23%.

(2) ①;②.

【解析】试题分析:(1)根据题中数据得到 ,代入样本中心值得到,进而得到方程,将x=7代入方程即可;(2由题干知设该企业每天亏损约为200万元为事件,平均每天收入约达到400万元为事件,平均每天收入约达到700万元为事件,则 ,进而得到分布列和均值;由第一小问得到未来连续三天该企业收入不低于1200万元包含五种情况,求概率之和即可.

解析:

(1)由题意,

.

时,

所以预测该企业2017年7月的市场份额为23%.

(2)①设该企业每天亏损约为200万元为事件,平均每天收入约达到400万元为事件,平均每天收入约达到700万元为事件

.

的分布列为

-200

400

700

0.1

0.2

0.3

所以(万元).

②由①知,未来连续三天该企业收入不低于1200万元包含五种情况.

.

所以该企业在未来三天总收入不低于1200万元的概率为0.876.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设抛物线的准线与轴的交点为,过作直线交抛物线于两点.

(1)求线段中点的轨迹;

(2)若线段的垂直平分线交对称轴于),求的取值范围;

(3)若直线的斜率依次取时,线段的垂直平分线与对称轴的交点依次为

,当时,

求: 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象在点处的切线为也为函数的图象的切线必须满足

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,函数的图象在点处的切线平行于轴.

(1)求的值;

(2)求函数的极小值;

(3)设斜率为的直线与函数的图象交于两点 ,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)已知椭圆的离心率为,椭圆的短轴端点与双曲线的焦点重合,过点且不垂直于轴的直线与椭圆相交于两点.

1)求椭圆的方程;

2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着共享单车的成功运营,更多的共享产品逐步走人大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷广元某景点设有共享电动车租车点,共享电动车的收费标准是每小时2不足1小时的部分按1小时计算甲、乙两人各租一辆电动车,若甲、乙不超过一小时还车的概率分别为;一小时以上且不超过两小时还车的概率分别为;两人租车时间都不会超过三小时.

求甲、乙两人所付租车费用相同的概率;

设甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图点是半径为的砂轮边缘上的一个质点,它从初始位置)开始,按逆时针方向每旋转一周,

1)求点的纵坐标关于时间的函数关系;

2)求点的运动周期和频率;

3)函数的图像可由余弦曲线经过怎样的变化得到?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)若在定义域内有两个极值点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列不等式的解集:

(1);

(2);

(3);

(4);

(5);

(6).

查看答案和解析>>

同步练习册答案