精英家教网 > 高中数学 > 题目详情

【题目】如图,在等腰梯形ABCD中, ,E,F分别是底边AB,CD的中点,把四边形BEFC沿直线EF折起,使得面BEFC⊥面ADFE,若动点P∈平面ADFE,设PB,PC与平面ADFE所成的角分别为θ1 , θ2(θ1 , θ2均不为0).若θ12 , 则动点P的轨迹为(

A.直线
B.椭圆
C.圆
D.抛物线

【答案】C
【解析】解:由题意,PE=BEcotθ1 , PF=CFcotθ2
∵BE= CF,θ12
∴PE= PF.
以EF所在直线为x轴,EF的垂直平分线为y轴建立坐标系,设E(﹣a,0),F(a,0),P(x,y),则
(x+a)2+y2= [(x﹣a)2+y2],
∴3x2+3y2+10ax+3a2=0,轨迹为圆.
故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】保险公司统计的资料表明:居民住宅距最近消防站的距离(单位:千米)和火灾所造成的损失数额(单位:千元)有如下的统计资料:

(1)请用相关系数(精确到0.01)说明之间具有线性相关关系;

(2)求关于的线性回归方程(精确到0.01);

(3)若发生火灾的某居民区距最近的消防站10.0千米,请评估一下火灾损失(精确到0.01).

参考数据:

参考公式:

回归直线方程为,其中为样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线C的方程为 ,点 ,以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.
(1)求曲线C的直角坐标方程及点R的直角坐标;
(2)设P为曲线C上一动点,以PR为对角线的矩形PQRS的一边垂直于极轴,求矩形PQRS周长的最小值及此时点P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间和极值;

(2)若对于任意,都有成立,求实数的取值范围;

(3)若,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解人们对某种食材营养价值的认识程度,某档健康养生电视节目组织名营养专家和名现场观众各组成一个评分小组,给食材的营养价值打分(十分制).下面是两个小组的打分数据:

第一小组

第二小组

(1)求第一小组数据的中位数与平均数,用这两个数字特征中的哪一种来描述第一小组打分的情况更合适?说明你的理由.

(2)你能否判断第一小组与第二小组哪一个更像是由营养专家组成的吗?请比较数字特征并说明理由.

(3)节目组收集了烹饪该食材的加热时间:(单位:)与其营养成分保留百分比的有关数据:

食材的加热时间(单位:

营养成分保留百分比

在答题卡上画出散点图,求关于的线性回归方程(系数精确到),并说明回归方程中斜率的含义.

附注:参考数据:.

参考公式:回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】质检部门对某工厂甲、乙两个车间生产的个零件质量进行检测.甲、乙两个车间的零件质量(单位:克)分布的茎叶图如图所示.零件质量不超过克的为合格.

(1)质检部门从甲车间个零件中随机抽取件进行检测,若至少件合格,检测即可通过,若至少件合格,检测即为良好,求甲车间在这次检测通过的条件下,获得检测良好的概率;

(2)若从甲、乙两车间个零件中随机抽取个零件,用表示乙车间的零件个数,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,分别是的中点,且.

1)求直线所成角的大小;

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面的中点.

(1)证明:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数,且),以为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为.

(1)若曲线只有一个公共点,求的值.

(2)为曲线上的两点,且,求的面积最大值.

查看答案和解析>>

同步练习册答案