精英家教网 > 高中数学 > 题目详情

设点P在双曲线上,若F1、F2为此双曲线的两个焦点,且|PF1|∶|PF2|=1∶3,则△F1PF2的周长等于

[  ]

A.22

B.16

C.14

D.12

答案:A
解析:

本题考查双曲线的方程及定义等知识.由题意,a=3,b=4,∴c=5,根据题意,点P在靠近焦点F1的那支上,且|PF2|=3|PF1|,所以由双曲线的定义,|PF2|-|PF1|=2|PF1|=2a=6,∴|PF1|=3,|PF2|=9,故△F1PF2的周长等于3+9+10=22.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•南宁二模)设F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右两个焦点.
(Ⅰ)若椭圆C上的点A(1,
3
2
)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(Ⅱ)设点P是(Ⅰ)中所得椭圆上的动点,Q(0,
1
2
),求|PQ|的最大值;
(Ⅲ)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P在椭圆上任意一点,当直线PM、PN的斜率都存在,并记为KPM、KPN时,那么KPM与KPN之积是与点P位置无关的定值.设对双曲线
x2
a2
-
y2
b2
=1写出具有类似特性的性质(不必给出证明).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设F1、F2分别为椭圆C:数学公式+数学公式=1(a>b>0)的左、右两个焦点.
(Ⅰ)若椭圆C上的点A(1,数学公式)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(Ⅱ)设点P是(Ⅰ)中所得椭圆上的动点,Q(0,数学公式),求|PQ|的最大值;
(Ⅲ)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P在椭圆上任意一点,当直线PM、PN的斜率都存在,并记为KPM、KPN时,那么KPM与KPN之积是与点P位置无关的定值.设对双曲线数学公式-数学公式=1写出具有类似特性的性质(不必给出证明).

查看答案和解析>>

科目:高中数学 来源:南宁二模 题型:解答题

设F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右两个焦点.
(Ⅰ)若椭圆C上的点A(1,
3
2
)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(Ⅱ)设点P是(Ⅰ)中所得椭圆上的动点,Q(0,
1
2
),求|PQ|的最大值;
(Ⅲ)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P在椭圆上任意一点,当直线PM、PN的斜率都存在,并记为KPM、KPN时,那么KPM与KPN之积是与点P位置无关的定值.设对双曲线
x2
a2
-
y2
b2
=1写出具有类似特性的性质(不必给出证明).

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省苏州市张家港外国语学校高二(上)周日数学试卷5(理科)(解析版) 题型:解答题

设F1、F2分别为椭圆C:+=1(a>b>0)的左、右两个焦点.
(Ⅰ)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(Ⅱ)设点P是(Ⅰ)中所得椭圆上的动点,Q(0,),求|PQ|的最大值;
(Ⅲ)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P在椭圆上任意一点,当直线PM、PN的斜率都存在,并记为KPM、KPN时,那么KPM与KPN之积是与点P位置无关的定值.设对双曲线-=1写出具有类似特性的性质(不必给出证明).

查看答案和解析>>

同步练习册答案