精英家教网 > 高中数学 > 题目详情
4.设a=4${\;}^{{{log}_3}2}}$,b=4${\;}^{{{log}_9}6}}$,c=($\frac{1}{2}$)${\;}^{-\sqrt{5}}}$,则(  )
A.a>b>cB.a>c>bC.b>c>aD.c>b>a

分析 利用指数函数与对数函数的单调性即可得出.

解答 解:∵1>log96=log3$\sqrt{6}$>log32,c=${4^{\frac{{\sqrt{5}}}{2}}}$,$\frac{{\sqrt{5}}}{2}$>1,
∴c>b>a.
故选:D.

点评 本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知由甲、乙两位男生和丙、丁两位女生组成的四人冲关小组,参加由安徽卫视推出的大型户外竞技类活动《男生女生向前冲》,活动共有四关,设男生闯过一至四关的概率依次是$\frac{5}{6},\frac{4}{5},\frac{3}{4},\frac{2}{3}$,女生闯过一至四关的概率依次是$\frac{4}{5},\frac{3}{4},\frac{2}{3},\frac{1}{2}$.
(1)求男生闯过四关的概率;
(2)设ε表示四人冲关小组闯过四关的人数,求随机变量?的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC,中,AB=2,cosC=$\frac{2\sqrt{7}}{7}$,D是AC上一点,AD=2DC,且cos∠DBC=$\frac{5\sqrt{7}}{14}$.则 $\overrightarrow{AD}$•$\overrightarrow{CB}$=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=sinx.
(1)当x>0时,证明:${f^'}(x)>1-\frac{x^2}{2}$;
(2)若当$x∈(0,\frac{π}{2})$时,$f(x)+\frac{f(x)}{{{f^'}(x)}}>ax$恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设a,b∈R,则“a+b>4”是“a>1且b>3”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知tanα=-2,求下列各式的值:
(1)$\frac{sinα-3cosα}{sinα+cosα}$
(2)$\frac{1}{sinα•cosα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=(a2-3a+3)ax是指数函数,
(1)求f(x)的表达式;
(2)判断F(x)=f(x)-f(-x)的奇偶性,并加以证明
(3)解不等式:loga(1-x)>loga(x+2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知数列{an},{bn}满足a1=1,且an,an+1是方程x2-bnx+3n=0的两根,则b8等于(  )
A.54B.108C.162D.324

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若幂函数y=mxα(m,α∈R)的图象经过点$(8,\frac{1}{4})$,则α=-$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案