精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱ABCA1B1C1中,EF分别为A1C1BC的中点,MN分别为A1BA1C的中点.求证:

1MN∥平面ABC

2EF∥平面AA1B1B.

【答案】1)证明见解析;(2)证明见解析;

【解析】

1)推导出MNBC,由此能证明MN∥平面ABC.

2)取A1B1的中点D,连接DEBD.推导出四边形DEFB是平行四边形,从而EFBD,由此能证明EF∥平面AA1B1B.

证明:(1)∵MN分别是A1BA1C中点.

MNBC

BC平面ABCMN平面ABC

MN∥平面ABC.

2)如图,取A1B1的中点D,连接DEBD.

DA1B1中点,EA1C1中点,

DEB1C1

在三棱柱ABCA1B1C1中,侧面BCC1B1是平行四边形,

BCB1C1BCB1C1,∵FBC的中点,∴BFB1C1

DEBFDEBF,∴四边形DEFB是平行四边形,∴EFBD

BD平面AA1B1BEF平面AA1B1B

EF∥平面AA1B1B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知:①函数

②向量,且ω0

③函数的图象经过点

请在上述三个条件中任选一个,补充在下面问题中,并解答.

已知 ,且函数fx)的图象相邻两条对称轴之间的距离为.

1)若,且,求fθ)的值;

2)求函数fx)在[02π]上的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电动车售后服务调研小组从汽车市场上随机抽取20辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于50公里和300公里之间,将统计结果分成5组:,绘制成如图所示的频率分布直方图.

1)求续驶里程在的车辆数;

2)求续驶里程的平均数;

3)若从续驶里程在的车辆中随机抽取2辆车,求其中恰有一辆车的续驶里程在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】请用空间向量求解已知正四棱柱中, 分别是棱上的点,且满足

求异面直线所成角的余弦值;

求面与面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是抛物线上的一点,过点作两条直线,分别与抛物线相交于异于点两点.

若直线过点的重心轴上,求直线的斜率;

若直线的斜率为1的垂心轴上,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面四边形中, ,将沿折起,使得平面平面,如图.

(1)求证:

(2)若中点,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)若, ,求函数图像上任意一点处切线斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数为偶函数,求实数的值;

2)若,求函数的单调递减区间;

3)当时,若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是各项均为正数的等比数列,.

1)求的通项公式;

2)设,求数列的前n项和.

查看答案和解析>>

同步练习册答案