精英家教网 > 高中数学 > 题目详情
如图2-3-10,在△OAB中,若OA =OB =2a,⊙O的半径r =a.问:AB与⊙O相切、相交、相离时,∠AOB的取值范围如何?

图2-3-10

思路分析:先作出OAB的距离OC,根据AB与⊙O的不同位置关系确定OC的取值范围,从而再确定∠AOB的取值范围.

解:过OOCAB,垂足为C,?

(1)当AB与⊙O相切时,OC =r =a,此时cos∠AOC = =,?

∴∠AOC=60°.?

又∵OA =OB,∴OC平分∠AOB.?

∴∠AOB =120°.?

(2)当AB与⊙O相交时,OC r =a,此时cos∠AOC ,?

∴60°<∠AOC<90°.?

∴120°<∠AOB<180°.?

(3)当AB与⊙O相离时,OC r,此时cos∠AOC ,?

∴0°<∠AOC <60°.∴0°<∠AOB<120°.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网2010年上海世博会组委会为保证游客参观的顺利进行,对每天在各时间段进入园区和离开园区的人数作了一个模拟预测.为了方便起见,以10分钟为一个计算单位,上午9点10分作为第一个计算人数的时间,即n=1;9点20分作为第二个计算人数的时间,即n=2;依此类推…,把一天内从上午9点到晚上24点分成了90个计算单位.
对第n个时刻进入园区的人数f(n)和时间n(n∈N*)满足以下关系(如图1):f(n)=
3600(1≤n≤24)
3600•3
n-24
12
(25≤n≤36)
-300n+21600(37≤n≤72)
0(73≤n≤90)
,n∈N*
对第n个时刻离开园区的人数g(n)和时间n(n∈N*)满足以下关系(如图2):g(n)=
0(1≤n≤24)
500n-12000(25≤n≤72)
5000(73≤n≤90)
,n∈N*
(1)试计算在当天下午3点整(即15点整)时,世博园区内共有多少游客?
(2)请求出当天世博园区内游客总人数最多的时刻.

查看答案和解析>>

科目:高中数学 来源: 题型:

某地区规划道路建设,考虑道路铺设方案,方案设计图中,求表示城市,两点之间连线表示两城市间可铺设道路,连线上数据表示两城市间铺设道路的费用,要求从任一城市都能到达其余各城市,并且铺设道路的总费用最小.例如:在三个城市道路设计中,若城市间可铺设道路的线路图如图1,则最优设计方案如图2,此时铺设道路的最小总费用为10.现给出该地区可铺设道路的线路图如图3,则铺设道路的最小总费用为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

“世界睡眠日”定在每年的3月21日,2009年的世界睡眠日主题是“科学管理睡眠”,以提高公众对健康睡眠的自我管理能力和科学认识,为此某网站进行了持续一周的在线调查,共有200人参加调查,现将数据整理分组如题中表格所示.
序号(i) 分组睡眠时间 组中值(mi 频数
(人数)
频率
(fi
1 [4,5) 4.5 8 0.04
2 [5,6) 5.5 52 0.26
3 [6,7) 6.5 60 0.30
4 [7,8) 7.5 56 0.28
5 [8,9) 8.5 20 0.10
6 [9,10] 9.5 4 0.02

(1)在答题卡给定的坐标系中画出频率分布直方图;
(2)睡眠时间小于8的概率是多少?
(3)为了对数据进行分析,采用了计算机辅助计算.分析中一部分计算见算法流程图(如图2),求输出的S的值,并说明S的统计意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图2-6-10,⊙O的直径AB垂直于弦CD,垂足为H,点P是上一动点(点P不与A、C重合),连结PC、PD、PA、AD,点E在AP的延长线上,PD与AB交于点F.给出下列四个结论:①CH2=AH·BH;②=;③AD2=DF·DP;④∠EPC=∠APD.

其中正确的个数是(    )

2-6-10

A.1                  B.2                C.3                  D.4

查看答案和解析>>

同步练习册答案