精英家教网 > 高中数学 > 题目详情

(2012•广东)如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.
(1)证明:BD⊥平面PAC;
(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.

(1)见解析      (2)3

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

三棱锥及其侧视图、俯视图如图所示.设分别为线段的中点,为线段上的点,且.

(1)证明:为线段的中点;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)(2011•广东)如图所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右水平平移后得到的,A,A′,B,B′分别为的中点,O1,O1′,O2,O2′分别为CD,C′D′,DE,D′E′的中点.

(1)证明:O1′,A′,O2,B四点共面;
(2)设G为A A′中点,延长A′O1′到H′,使得O1′H′=A′O1′.证明:BO2′⊥平面H′B′G

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,ABCD是边长为2的正方形,,ED=1,//BD,且.
(1)求证:BF//平面ACE;
(2)求证:平面EAC平面BDEF;
(3)求二面角B-AF-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,⊥底面,底面为菱形,点为侧棱上一点.
(1)若,求证:平面; 
(2)若,求证:平面⊥平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,平面ABCD,AD//BC,BC=2AD,AC,Q是线段PB的中点.

(1)求证:平面PAC;
(2)求证:AQ//平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013·辽宁高考)如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.

(1)求证:平面PAC⊥平面PBC.
(2)设Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,为正三角形,且平面平面

(1)证明:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面为一直角梯形,侧面PAD是等边三角形,其中,平面底面的中点.
 
(1)求证://平面
(2)求证:
(3)求与平面所成角的正弦值。

查看答案和解析>>

同步练习册答案