精英家教网 > 高中数学 > 题目详情
已知f(x)=2x-
1
2
x2,g(x)=logax(a>0且a≠1),h(x)=f(x)-g(x)在定义域上为减函数,且其导函数h(x)存在零点.
(I)求实数a的值;
(II)函数y=p(x)的图象与函数y=g(x)的图象关于直线y=x对称,且y=p(x)为函数y=p(x)的导函数,A(x1,y1),B(x2,y2),(x1<x2)是函数y=p(x)图象上两点,若p(x0)=
y1-y2
x1-x2
,判断P(x0),,P(x1),P(x2)的大小,并证明你的结论.
分析:(I)令h′(x)≤0在(0,+∞)上恒成立,分离出
1
lna
,求出二次函数(-x2+2x)max,令
1
lna
( -x2+2x)max
求出a的范围.
(II)通过分析法,构造函F((x),通过导数判断出F(x)的单调性,判断出P(x0),P(x1),P(x2)的大小.
解答:解:(I)f′(x)=2-x,g′(x)=
1
xlna

∵h(x)=f(x)-g(x)在定义域上为减函数
∴h′(x)≤0在(0,+∞)上恒成立即
1
lna
≥-x2+2x
在(0,+∞)上恒成立
1
lna
≥  ( -x2+2x)max
x∈(0,+∞)
令u(x)=-x2+2x=-(x-1)2+1≤1
1
lna
≥1

∵h′(x)存在零点
x2-2x+
1
lna
=0在(0,+∞)上有根

△=4(1-
1
lna
)≥0

1
lna
≤1

∴lna=1即a=e
(II)∵g(x)=lnx,p(x)=ex
令F(x)=ex(x-x2)-ex+ex2(x<x2)
F′(x)=ex+exx-x2ex-ex=(x-x2)ex<0
∴F(x)在(-∞,x2)上递减
ex1(x1-x2)>ex1-ex2
ex1
ex1-ex2
x1-x2

同理
ex1-ex2
x1-x2
ex2

所以有P(x1)<P(x0)<P(x2
点评:解决不等式恒成立,常采用的方法是分离参数,构造新函数,转化为求函数的最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义函数y=f(x),x∈D,若存在常数C,对任意的x1∈D,存在唯一的x2∈D,使得
f(x1)f(x2)
=C
,则称函数f(x)在D上的几何平均数为C.已知f(x)=2x,x∈[1,2],则函数f(x)=2x在[1,2]上的几何平均数为(  )
A、
2
B、2
C、2
2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2x可以表示成一个奇函数g(x)与一个偶函数h(x)之和,若关于x的不等式ag(x)+h(2x)≥0对于x∈[1,2]恒成立,则实数a的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•大连一模)选修4-5:不等式选讲
已知f(x)=|2x-1|+ax-5(a是常数,a∈R)
(Ⅰ)当a=1时求不等式f(x)≥0的解集.
(Ⅱ)如果函数y=f(x)恰有两个不同的零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2x+3,g(x)=4x-5,则使得f(h(x))=g(x)成立的h(x)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区一模)已知f(x)=2x+x,则f-1(6)=
2
2

查看答案和解析>>

同步练习册答案