精英家教网 > 高中数学 > 题目详情
4.函数f(x)=Asin(ωx+φ)(A>0,ω,0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数F(x)=3[f(x-$\frac{π}{12}$)]2+mf(x-$\frac{π}{12}$)+2在区间[0,$\frac{π}{2}$]上有四个不同零点,求实数m的取值范围.

分析 (Ⅰ)根据f(x)的部分图象求出A、ω以及φ的值即可;
(Ⅱ)求出f(x-$\frac{π}{12}$)=sin2x,化简函数F(x),
根据题意设t=sin2x,则由x∈[0,$\frac{π}{2}$]时t∈[0,1],
把F(x)=0化为3t2+mt+2=0在[0,1]上有两个不等的实数根,
由此求出实数m的取值范围.

解答 解:(Ⅰ)根据f(x)=Asin(ωx+φ)的部分图象知,
A=1,$\frac{T}{2}$=$\frac{2π}{3}$-$\frac{π}{6}$=$\frac{π}{2}$,
∴T=π,
∴ω=$\frac{2π}{T}$=2;
由“五点法画图”知,
2×$\frac{π}{6}$+φ=$\frac{π}{2}$,解得φ=$\frac{π}{6}$;
∴函数f(x)=sin(2x+$\frac{π}{6}$);
(Ⅱ)∵f(x-$\frac{π}{12}$)=sin(2x-$\frac{π}{6}$+$\frac{π}{6}$)=sin2x,
∴函数F(x)=3[f(x-$\frac{π}{12}$)]2+mf(x-$\frac{π}{12}$)+2
=3sin2(2x)+msin2x+2;
在区间[0,$\frac{π}{2}$]上有四个不同零点,
设t=sin2x,由x∈[0,$\frac{π}{2}$],得2x∈[0,π],即sin2x∈[0,1],
∴t∈[0,1],
令F(x)=0,则3t2+mt+2=0在[0,1]上有两个不等的实数根,
令g(t)=3t2+mt+2
则由$\left\{\begin{array}{l}{△>0}\\{g(0)≥0}\\{g(1)>0}\\{0<-\frac{m}{6}<1}\end{array}\right.$,解得-5<m<-2$\sqrt{6}$;
∴实数m的取值范围是-5<m<-2$\sqrt{6}$.

点评 本题考查了由部分图象求三角函数解析式的应用问题,也考查了函数零点与方程根的应用问题,是综合性问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.f(x)是偶函数,且在(-∞,0)上是增函数,则下列关系成立的是(  )
A.f(-2)<f(1)<f(3)B.f(1)<f(-2)<f(3)C.f(3)<f(-2)<f(1)D.f(-2)<f(3)<f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.抛物线y=ax2(a≠0)的焦点坐标为(  )
A.(0,$\frac{a}{4}$)或(0,-$\frac{a}{4}$)B.(0,$\frac{1}{4a}$)或(0,-$\frac{1}{4a}$)C.$(0,\frac{1}{4a})$D.$(\frac{1}{4a},0)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=xlnx,g(x)=k(x-1)
(1)当k=e 时,求函数$h(x)=\frac{f(x)-g(x)}{x}$ 的极值;
(2)当k>0 时,若对任意两个不等的实数x1,x2∈[1,2],均有$|{\frac{{f({x_1})}}{x_1}-\frac{{f({x_2})}}{x_2}}|>|{\frac{{g({x_1})}}{x_1}-\frac{{g({x_2})}}{x_2}}|$,求实数k 的取值范围;
(3)是否存在实数k,使得函数$h(x)=\frac{f(x)-g(x)}{x}$ 在[1,e]上的最小值为$\frac{1}{2}$,若存在求出k 的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,PA⊥面ABCD,PA=$\sqrt{3}$,E,F分别为BC,PA的中点.
(1)求证:BF∥面PDE
(2)求点C到面PDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在正方体ABCD-A1B1C1D1中,M,N分别是AB,BC的中点. 
(1)求证:平面B1MN⊥平面BB1D1D;
(2)在棱DD1上是否存在一点P,使得BD1∥平面PMN,若存在,求D1P:PD的比值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)已知在平面直角坐标系中,直线l经过点P(1,1),倾斜角α=$\frac{π}{6}$,写出直线l的参数方程.
(2)极坐标系中,已知圆ρ=10cos$({\frac{π}{3}-θ})$,将它化为直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在平面直角坐标中,有不共线的三点A,B,C,已知AB,AC所在直线的斜率分别为k1,k2,则“k1k2>-1”是“∠BAC为锐角”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点A,B分别是椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左,右顶点,长轴长为4,离心率为$\frac{1}{2}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点P为椭圆C上除长轴顶点外的任一点,直线AP,PB与直线x=4分别交于点M,N,已知常数λ>0,求$λ\overrightarrow{PM}•\overrightarrow{PN}+\overrightarrow{PA}•\overrightarrow{PB}$的取值范围.

查看答案和解析>>

同步练习册答案