精英家教网 > 高中数学 > 题目详情

【题目】Ⅰ)如表所示是某市最近5年个人年平均收入表节选.求y关于x的回归直线方程,并估计第6年该市的个人年平均收入(保留三位有效数字).

年份x

1

2

3

4

5

收入y(千元)

21

24

27

29

31

其中 1:= =

Ⅱ)下表是从调查某行业个人平均收入与接受专业培训时间关系得到2×2列联表:

受培时间一年以上

受培时间不足一年

总计

收入不低于平均值

60

20

收入低于平均值

10

20

总计

100

完成上表,并回答:能否在犯错概率不超过0.05的前提下认为收入与接受培训时间有关系”.

2:

PK2k0

0.50

0.40

0.10

0.05

0.01

0.005

k0

0.455

0.708

2.706

3.841

6.635

7.879

3:

K2=.(n=a+b+c+d

【答案】;(Ⅱ)列联表见解析,在犯错概率不超过的前提下我们认为

【解析】分析:(I)由表数据求得样本中心点,利用最小二乘法求出线性回归方程的系数,将样本中心点代入,求出的值,写出线性回归方程;
(II)由数据将表填完整,通过所给的数据计算K2观测值,同临界值表中的数据进行比较,可得到结论.

详解:

Ⅰ)由已知中数据可得:

x=6时,=33.9.

即第6年该市的个人年平均收入约为33.9千元;

Ⅱ)某行业个人平均收入与接受专业培训时间关系得到2×2列联表:

受培时间一年以上

受培时间不足一年

合计

收入不低于平均值

60

20

80

收入低于平均值

10

10

20

合计

70

30

100

假设:“收入与接受培训时间没有关系

根据列联表中的数据,得到K2的观测值为

故在犯错概率不超过0.05的前提下我们认为收入与接受培训时间有关系”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点M的极坐标为(2 ),曲线C的参数方程为 (α为参数).
(1)直线l过M且与曲线C相切,求直线l的极坐标方程;
(2)点N与点M关于y轴对称,求曲线C上的点到点N的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数既是奇函数又在(﹣11)上是减函数的是(  )

A. B.

C. yx1D. ytanx

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,曲线C:(x﹣1)2+y2=1.直线l经过点P(m,0),且倾斜角为 .以O为极点,以x轴正半轴为极轴,建立坐标系.
(Ⅰ)写出曲线C的极坐标方程与直线l的参数方程;
(Ⅱ)若直线l与曲线C相交于A,B两点,且|PA||PB|=1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,数列{bn}满足:bn+12bn+2,且an+1anbn

1)求证:数列{bn+2}是等比数列;

2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,且,圆轴交于点为椭圆上的动点,面积最大值为.

(1)求圆与椭圆的方程;

(2)圆的切线交椭圆于点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人玩抽红包游戏,现将装有5元、3元、2元的红包各3个,放入一不透明的暗箱中并搅拌均匀,供3人随机抽取. (Ⅰ)若甲随机从中抽取3个红包,求甲抽到的3个红包中装有的金额总数小于10元的概率.
(Ⅱ)若甲、乙、丙按下列规则抽取:
①每人每次只抽取一个红包,抽取后不放回;
②甲第一个抽取,甲抽完后乙再抽取,丙抽完后甲再抽取…,依次轮流;
③一旦有人抽到装有5元的红包,游戏立即结束.
求甲抽到的红包的个数X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是自然对数的底数)与的图象上存在关于轴对称的点,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面,直线与底面所成的角为分别是的中点.

1)求证:直线平面

2)若,求证:直线平面

3)若,求棱锥的体积.

查看答案和解析>>

同步练习册答案