精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若关于的不等式的解集为,求实数的值;

2)设,若不等式都成立,求实数的取值范围;

3)若时,求函数的零点.

【答案】1.(23)见解析

【解析】

1)根据根与系数关系列方程组,解方程组求得的值.

2)将不等式转化为,求得左边函数的最小值,由此解一元二次不等式求得的取值范围.

3)利用判别式进行分类讨论,结合函数的定义域,求得函数的零点.

1)因为不等式的解集为,所以-3,1为方程的两个根,

由根与系数的关系得

,即

2)当时,

因为不等式都成立,

所以不等式对任意实数都成立.

所以

时,

所以,即,得

所以实数的取值范围为

3)当时,

函数的图像是开口向上且对称轴为的抛物线,

①当,即时,恒成立,函数无零点.

②当,即时,

(ⅰ)当时,,此时函数无零点.

(ⅱ)当时,,此时函数有零点3

③当,即时,令,得

(ⅰ)当时,得,此时

所以当时,函数无零点.

(ⅱ)当时,得,此时,所以当时,函数有两个零点:

综上所述:当时,函数无零点;

时,函数有一个零点为3

时,函数有两个零点:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为.

1)当时,若函数在区间上有最大值,求的取值范围;

2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,点P为平面上的动点,过点P作直线l的垂线,垂足为Q,且

求动点P的轨迹C的方程;

设点P的轨迹Cx轴交于点M,点AB是轨迹C上异于点M的不同的两点,且满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx=ax2-2xex,其中a≥0

1)当a=时,求fx)的极值点;

2)若fx)在[-11]上为单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆周率是圆的周长与直径的比值,一般用希腊字母表示,早在公元480年左右,南北朝时期的数学家祖冲之就得出精确到小数点后7位的结果,他是世界上第一个把圆周率的数值计算到小数点后第七位的人,这比欧洲早了约1000年,在生活中,我们也可以通过设计下面的实验来估计的值;从区间内随机抽取200个数,构成100个数对,其中满足不等式的数对共有11个,则用随机模拟的方法得到的的近似值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系平面上的一列点,…,,记为,若由构成的数列满足,其中为与轴正方向相同的单位向量,则称点列.

1)判断,…,,是否为点列,并说明理由;

2)若点列.且点在点的右上方,(即)任取其中连续三点判断的形状(锐角三角形,直角三角形,钝角三角形),并给予证明;

3)若点列,正整数,满足.求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,设函数,求函数的单调区间和极值;

(2)设的导函数,若对任意的恒成立,求的取值范围;

(3)若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

如图,已知四棱锥的底面为菱形,且 .

I)求证:平面 平面

II)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂有甲,乙两个车间生产同一种产品,甲车间有工人人,乙车间有工人人,为比较两个车间工人的生产效率,采用分层抽样的方法抽取工人,甲车间抽取的工人记作第一组,乙车间抽取的工人记作第二组,并对他们中每位工人生产完成的一件产品的事件(单位:)进行统计,按照进行分组,得到下列统计图.

分别估算两个车间工人中,生产一件产品时间少于的人数;

分别估计两个车间工人生产一件产品时间的平均值,并推测车哪个车间工人的生产效率更高?

从第一组生产时间少于的工人中随机抽取人,求抽取人中,至少人生产时间少于的概率.

查看答案和解析>>

同步练习册答案