精英家教网 > 高中数学 > 题目详情
12.某手机厂商推出一款6寸大屏手机,现对500名该手机用户(200名女性,300名男性)进行调查,对手机进行评分,评分的频数分布表如下:
女性用户分值区间[50,60)[60,70)[70,80)[80,90)[90,100]
频数2040805010
男性用户分值区间[50,60)[60,70)[70,80)[80,90)[90,100]
频数4575906030
(1)完成下列频率分布直方图,并指出女性用户和男性用户哪组评分更稳定(不计算具体值,给出结论即可);

(2)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取2名用户,求两名用户中评分都小于90分的概率.

分析 (1)作出女性用户和男性用户的频率分布表,由图可得女性用户更稳定.
(2)运用分层抽样从男性用户中抽取20名用户,评分不低于80分有6人,其中评分小于90分的人数为4,记为A,B,C,D,评分不小于90分的人数为2,记为a,b,设事件M为“两名用户评分都小于90分”从6人人任取2人,利用列举法能求出两名用户中评分都小于90分的概率.

解答 (本小题满分12分)
解:(1)女性用户和男性用户的频率分布表分别如下左、右图:

由图可得女性用户更稳定.(4分)
(2)运用分层抽样从男性用户中抽取20名用户,评分不低于80分有6人,
其中评分小于90分的人数为4,记为A,B,C,D,
评分不小于90分的人数为2,记为a,b,
设事件M为“两名用户评分都小于90分”从6人人任取2人,
基本事件空间为Ω={(AB),(AC),(AD),(Aa),(Ab),
(BC),(BD),(Ba),(Bb),(CD),(Ca),(Cb),
(Da),(Db),(ab)},共有15个元素.
M={(AB),(AC),(AD),(BC),(BD),(CD)},共有6个元素.
P(M)=$\frac{6}{15}=\frac{2}{5}$.(12分)

点评 本小题主要考查学生对概率统计知识的理解,以及统计案例的相关知识,同时考查学生的数据处理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=|log2|1-x||,若函数g(x)=f2(x)+af(x)+2b有6个不同的零点,则这6个零点之和为(  )
A.7B.6C.$\frac{11}{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.正方形ABCD与等边三角形BCE有公共边BC,若∠ABE=120°,则BE与平面ABCD所成角的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.《九章算术》是我国第一部数学专著,下有源自其中的一个问题:“今有金箠(chuí),长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问金箠重几何?”其意思为:“今有金杖(粗细均匀变化)长5尺,截得本端1尺,重4斤,截得末端1尺,重2斤.问金杖重多少?”则答案是15斤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|x2-2x-3<0},B={x||x|<2},则A∩B=(  )
A.{x|-2<x<2}B.{x|-2<x<3}C.{x|-1<x<3}D.{x|-1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若实数a,b满足a>0,b>0,则“a>b”是“a+lna>b+lnb”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=sinωx(ω>0),若函数y=f(x+a)(a>0)的部分图象如图所示,则ω=2,a的最小值是$\frac{π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.我国科研人员屠呦呦发现从青篙中提取的青篙素抗疟性超强,几乎达到100%,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.
(1)写出第一次服药后y与t之间的函数关系式y=f(t);
(2)据进一步测定:每毫升血液中含药量不少于$\frac{1}{9}$微克时,治疗有效,求服药一次后治疗有效的时间是多长?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知双曲线${C_1}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$与圆${C_2}:{x^2}+{y^2}={c^2}$(c是双曲线的半焦距)相交于第一象限内一点P,又F1,F2分别是双曲线C1的左、右焦点,若$∠P{F_2}{F_1}=\frac{π}{3}$,则双曲线的离心率为$\sqrt{3}+1$.

查看答案和解析>>

同步练习册答案