A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |
分析 p1:利用平方关系可知正确;
p2:取x=0,y=$\frac{π}{3}$,即可判断出正误.
p3:利用倍角公式可得$\sqrt{\frac{1-cos2x}{2}}$=|sinx|;
p4:由tanx=cosx,化为sinx=cos2x=1-sin2x,即sin2x+sinx-1=0,解出即可判断出正误.
解答 解:p1:?x∈R,利用平方关系可知:sin2$\frac{x}{2}$+cos2$\frac{x}{2}$=1,正确;
p2:?x、y∈R,cos(x-y)=cosx-cosy,取x=0,y=$\frac{π}{3}$,可知正确.
p3:?x∈[0,π],sinx≥0,∴$\sqrt{\frac{1-cos2x}{2}}$=$\sqrt{si{n}^{2}x}$=|sinx|=sinx,因此正确;
p4:假设:?x∈R,tanx=cosx,则sinx=cos2x=1-sin2x,化为sin2x+sinx-1=0,解得sinx=$\frac{\sqrt{5}-1}{2}$∈(0,1),因此x存在,因此假设正确.
综上可得:四个命题都正确.
故选:A.
点评 本题考查了简易逻辑的判定方法、三角函数的化简、同角三角函数基本关系式、倍角公式等,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | $\frac{{\sqrt{3}}}{2}$ | D. | -3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
x | 1 | 2 | 3 | 4 | 5 | … | 25 | 26 |
f(x) | a | b | c | d | e | … | y | z |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,2) | B. | (-∞,1] | C. | [1,2) | D. | (0,1] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com