【题目】如图,直线AB经过⊙O上一点C,⊙O的半径为3,△AOB是等腰三角形,且C是AB中点,⊙O交直线OB于E、D.
(1)证明:直线AB与⊙O相切;
(2)若∠CED的正切值为 ,求OA的长.
【答案】
(1)解:连接OC,
∵OA=OB,CA=CB,
∴OC⊥AB,
∴AB是⊙O的切线,即直线AB与⊙O相切.
(2)证明:依题意知,DE是直径,
∴∠ECD=90°,
∴在Rt△ECD中,由tan∠CED= ,得 ,
∵AB是⊙O的切线,
∴∠BCD=∠E,
又∵∠CBD=∠EBC,
∴△BCD∽△BEC,
∴ ,设BD=x,则BC=2x,
又BC2=BDBE,
∴(2x)2=x(x+6),解得x1=0,x2=2,
∵BD=x>0,
∴BD=2,
∴OA=OB=BD+OD=3+2=5.
【解析】(1)连接OC,证明:OC⊥AB,即可证明直线AB与⊙O相切;(2)证明△BCD∽△BEC,可得 ,利用切割线定理,求OA的长.
科目:高中数学 来源: 题型:
【题目】在如图所示的空间几何体中,平面ACD⊥平面ABC,AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角为60°,且点E在平面ABC上的射影落在∠ABC的平分线上.
(1)求证:DE∥平面ABC;
(2)求二面角E﹣BC﹣A的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点、焦点在x轴上的椭圆C1与双曲线C2有共同的焦点,设左右焦点分别为F1,F2,P是C1与C2在第一象限的交点, PF1F2是以PF1为底边的等腰三角形,若椭圆与双曲线的离心率分别为e1,e2,则e1·e2的取值范围是( )
A. (,+) B. (,+) C. (,+) D. (0,+)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市为了缓解交通压力,提倡低碳环保,鼓励市民乘坐公共交通系统出行.为了更好地保障市民出行,合理安排运力,有效利用公共交通资源合理调度,在某地铁站点进行试点调研市民对候车时间的等待时间(候车时间不能超过20分钟),以便合理调度减少候车时间,使市民更喜欢选择公共交通.为此在该地铁站的一些乘客中进行调查分析,得到如下统计表和各时间段人数频率分布直方图:
分组 | 等待时间(分钟) | 人数 |
第一组 | [0,5) | 10 |
第二组 | [5,10) | a |
第三组 | [10,15) | 30 |
第四组 | [15,20) | 10 |
(1)求出a的值;要在这些乘客中用分层抽样的方法抽取10人,在这10个人中随机抽取3人至少一人来自第二组的概率;
(2)从这10人中随机抽取3人进行问卷调查,设这3个人共来自X个组,求X的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线和的焦点分别为, 交于O,A两点(O为坐标原点),且
(Ⅰ)求抛物线的方程;
(Ⅱ)过点O的直线交的下半部分于点M,交的左半部分于点N,点,求面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com