精英家教网 > 高中数学 > 题目详情

【题目】如图,直线AB经过⊙O上一点C,⊙O的半径为3,△AOB是等腰三角形,且C是AB中点,⊙O交直线OB于E、D.

(1)证明:直线AB与⊙O相切;
(2)若∠CED的正切值为 ,求OA的长.

【答案】
(1)解:连接OC,

∵OA=OB,CA=CB,

∴OC⊥AB,

∴AB是⊙O的切线,即直线AB与⊙O相切.


(2)证明:依题意知,DE是直径,

∴∠ECD=90°,

∴在Rt△ECD中,由tan∠CED= ,得

∵AB是⊙O的切线,

∴∠BCD=∠E,

又∵∠CBD=∠EBC,

∴△BCD∽△BEC,

,设BD=x,则BC=2x,

又BC2=BDBE,

∴(2x)2=x(x+6),解得x1=0,x2=2,

∵BD=x>0,

∴BD=2,

∴OA=OB=BD+OD=3+2=5.


【解析】(1)连接OC,证明:OC⊥AB,即可证明直线AB与⊙O相切;(2)证明△BCD∽△BEC,可得 ,利用切割线定理,求OA的长.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的空间几何体中,平面ACD⊥平面ABC,AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角为60°,且点E在平面ABC上的射影落在∠ABC的平分线上.

(1)求证:DE∥平面ABC;
(2)求二面角E﹣BC﹣A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点、焦点在x轴上的椭圆C1与双曲线C2有共同的焦点,设左右焦点分别为F1,F2,P是C1与C2在第一象限的交点, PF1F2是以PF1为底边的等腰三角形,若椭圆与双曲线的离心率分别为e1,e2,则e1·e2的取值范围是( )

A. (,+) B. (,+) C. (,+) D. (0,+)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了缓解交通压力,提倡低碳环保,鼓励市民乘坐公共交通系统出行.为了更好地保障市民出行,合理安排运力,有效利用公共交通资源合理调度,在某地铁站点进行试点调研市民对候车时间的等待时间(候车时间不能超过20分钟),以便合理调度减少候车时间,使市民更喜欢选择公共交通.为此在该地铁站的一些乘客中进行调查分析,得到如下统计表和各时间段人数频率分布直方图:

分组

等待时间(分钟)

人数

第一组

[0,5)

10

第二组

[5,10)

a

第三组

[10,15)

30

第四组

[15,20)

10


(1)求出a的值;要在这些乘客中用分层抽样的方法抽取10人,在这10个人中随机抽取3人至少一人来自第二组的概率;
(2)从这10人中随机抽取3人进行问卷调查,设这3个人共来自X个组,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(x≠0,常数a∈R).

(1)判断f(x)的奇偶性,并说明理由;

(2)若f(1)=2,试判断f(x)在[2,+∞)上的单调性

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】个质数构成公差为的等差数列,且.求证

(1)是质数时,

(2)时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆+y2=1上两个不同的点A,B关于直线y=mx+对称.

(1)求实数m的取值范围;

(2)求△AOB面积的最大值(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点分别为 交于O,A两点(O为坐标原点),且

求抛物线的方程;

过点O的直线交的下半部分于点M,交的左半部分于点N,点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆两点,且圆心在直线

(1)求圆的方程

(2)若直线过点且被圆截得的线段长为,求的方程

查看答案和解析>>

同步练习册答案