精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列{an}的公差不为零,a1=25,且a1a11a13成等比数列.

(1)求{an}的通项公式;

(2) 是{an}的前n项和,求的最大值。

【答案】(1) an=-2n+27.

(2)169.

【解析】分析:(1)先根据a1a11a13成等比数列求公差,再根据等差数列通项公式得结果,(2)根据等差数列前n项和公式得,再根据二次函数性质求最大值.

详解: (1)设{an}的公差为d.

由题意,aa1a13,即(a1+10d)2a1(a1+12d).

于是d(2a1+25d)=0.

a1=25,所以d=0(舍去),d=-2.

an=-2n+27.

(2)因为

=

当n=13时有最大值为169.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法正确的个数有( )

①用刻画回归效果越大时模型的拟合效果越差反之则越好

②命题“”的否定是“”;

③若回归直线的斜率估计值是样本点的中心为则回归直线方程是

④综合法证明数学问题是“由因索果”,分析法证明数学问题是“执果索因”。

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为 (其中为参数).现以坐标原点为极点轴的非负半轴为极轴建立极坐标标系,曲线的极坐标方程为.

(1)写出直线的普通方程和曲线的直角坐标方程;(2)求直线被曲线截得的线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( )
A.xα∈R,f(xα)=0
B.函数y=f(x)的图象是中心对称图形
C.若xα是f(x)的极小值点,则f(x)在区间(﹣∞,xα)单调递减
D.若xα是f(x)的极值点,则f′(xα)=0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,O为坐标原点,以O为圆心的圆与直线相切.

(1)求圆O的方程.

(2)直线与圆O交于AB两点,在圆O上是否存在一点M,使得四边形为菱形?若存在,求出此时直线l的斜率;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB= AB.

(1)证明:BC1∥平面A1CD
(2)求二面角D﹣A1C﹣E的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ln(x+m)
(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;
(2)当m≤2时,证明f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,且经过点.

(1)求椭圆方程;

(2)过点的直线与椭圆交于两个不同的点,求线段的垂直平分线在轴截距的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品有4只次品和6只正品,每只产品均不相同且可区分,今每次取出一只来测试,直到这4只次品全测出为止,则最后一只次品恰好在第五次测试时被发现,则不同情况种数是______(用数字作答)

查看答案和解析>>

同步练习册答案