精英家教网 > 高中数学 > 题目详情
5.已知P(2$\sqrt{2}$,$\sqrt{5}$)在双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{{b}^{2}}$=1上,其左、右焦点分别为F1、F2,三角形PF1F2的内切圆切x轴于点M,则$\overrightarrow{MP}$•$\overrightarrow{M{F}_{2}}$的值为(  )
A.2$\sqrt{2}$-1B.2$\sqrt{2}$+1C.2$\sqrt{2}$-2D.2$\sqrt{2}$-$\sqrt{5}$

分析 根据题意,利用切线长定理,再利用双曲线的定义,把|PF1|-|PF2|=4,转化为|AF1|-|HF2|=4,从而求得点M的横坐标,即可得出结论.

解答 解:P(2$\sqrt{2}$,$\sqrt{5}$)在双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{{b}^{2}}$=1上,可得b=$\sqrt{5}$,
∴F1(-3,0)、F2(3,0),
如图,设M(x,0),内切圆与x轴的切点是点M,PF1、PF2与内切圆的切点分别为N、H,
∵由双曲线的定义可得|PF1|-|PF2|=2a=4,
由圆的切线长定理知,|PN|=|PH|,故|NF1|-|HF2 |=4,
即|MF1|-|HF2|=4,
设内切圆的圆心横坐标为x,则点M的横坐标为x,
故(x+3)-(3-x)=4,∴x=2.
∴$\overrightarrow{MP}$•$\overrightarrow{M{F}_{2}}$=(2$\sqrt{2}$-2,$\sqrt{5}$)•(3-2,0)=2$\sqrt{2}$-2,
故选:C.

点评 本题考查双曲线的定义、切线长定理,体现了转化的数学思想以及数形结合的数学思想,正确运用双曲线的定义是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知sin(3π+θ)=$\frac{1}{2}$,求$\frac{sin(θ-\frac{π}{2})}{cosθ[cos(π+θ)-1]}$+$\frac{sin(\frac{5π}{2}-θ)}{cos(θ+2π)cos(3π+θ)+cos(-θ)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,a,b,c分别是三个内角A,B,C的对边,设向量$\overrightarrow{p}$=(b-c,a-c),$\overrightarrow{q}$=(c+a,b),若$\overrightarrow{p}$∥$\overrightarrow{q}$,则角A的大小是(  )
A.90°B.45°C.60°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在数列{an}中,a1=1,an=$\frac{{{a_{n-1}}}}{{c{a_{n-1}}+1}}$(c为常数,n∈N*,n≥2),又a1,a2,a5成公比不为l的等比数列.
(I)求证:{$\frac{1}{a_n}$}为等差数列,并求c的值;
(Ⅱ)设{bn}满足b1=$\frac{2}{3}$,bn=an-1an+1(n≥2,n∈N*),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知f(x)是定义在(-∞,0)∪(0,+∞)的奇函数,当x∈(-∞,0)时,f(x)=x2+2x,那么当x∈(0,+∞)时,f(x)=-x2+2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设fn(x)=(1+x)n,n∈N*
(1)若g(x)=f6(x)+2f7(x)+3f8(x),求g(x)中含x6项的系数;
(2)若h(x)=fn(x)+fn($\frac{1}{x}$),求h2011(x)在区间[$\frac{1}{3}$,2]上的最大值与最小值;
(3)证明:Cmm+2Cmm+1+3Cmm+2+…+nCmm+n-1=$\frac{(m+1)n+1}{m+2}$•Cm+1m+n(m,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=|x|-$\frac{1}{1+{x}^{2}}$+1,
(1)证明:函数f(x)在[0,+∞)上单调递增.
(2)解不等式f(x)>f(2x-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列函数中,在区间(0,+∞)上是增函数的是(  )
A.y=$\frac{1}{x+1}$B.y=2x-1C.y=-|x|D.y=x2-3x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.一个正四棱台,其上、下底面均为正方形,边长分别为8cm和18cm,侧棱长为13cm,则其表面积为1012cm2

查看答案和解析>>

同步练习册答案