精英家教网 > 高中数学 > 题目详情

【题目】已知平面上的线段及点,任取上一点,线段长度的最小值称为点到线段的距离,记作.请你写出到两条线段距离相等的点的集合,其中是下列两组点中的一组.对于下列两种情形,只需选做一种,满分分别是① 3分;② 5分.① ;② .你选择第_____种情形,到两条线段距离相等的点的集合_____________.

【答案】①, 轴非负半轴,抛物线,直线

【解析】

根据题意从两组点的坐标中选一组,根据所给的四个点的坐标,写出两条直线的方程,从直线方程中看出这两条直线之间的平行关系,得到要求的结果.

对于①,

利用两点式写出两条直线的方程

到两条线段距离相等的点的集合

根据两条直线的方程可知两条直线之间的关系是平行,

到两条线段距离相等的点的集合为

对于②,

根据第一组作出的结果,观察第二组数据的特点,连接得到线段以后,可以得到到两条线段距离相等的点是轴的非负半轴,抛物线抛物线,直线

故满足条件的集合.

综上所述,①,;②,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形是边长为8的菱形,是等边三角形,二面角的余弦值为.

(Ⅰ)求证:

(Ⅱ)求直线与平面夹角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(Ⅰ)当曲线在点处的切线与直线垂直时,求的值;

(Ⅱ)若函数有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中, 边上的中线长为3,且 .

(1)求的值;

(2)求外接圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关命题的说法正确的是__________________.

①命题x23x20,则x1”的逆否命题为:若x≠1,则x23x2≠0

x1x23x20的充分不必要条件

③若pq为假命题,则pq均为假命题

④对于命题pxR,使得x2x1<0,则非pxR 均有x2x1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面是正方形的四棱锥中,平面的中点.

(1)求证:平面

(2)在线段上是否存在点,使得平面?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱锥A-BPC中,MAB的中点,DPB的中点,且为正三角形.

1)求证:平面APC

2)若,求三棱锥D-BCM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧面底面,四边形是边长为2的菱形,EF分别为AC的中点.

(1)求证:直线EF∥平面

(2)设分别在侧棱上,且,求平面BPQ分棱柱所成两部分的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的内角的对边分别为内一点,若分别满足下列四个条件:

则点分别为的(

A.外心、内心、垂心、重心B.内心、外心、垂心、重心

C.垂心、内心、重心、外心D.内心、垂心、外心、重心

查看答案和解析>>

同步练习册答案