精英家教网 > 高中数学 > 题目详情
(2013•普陀区二模)若圆C的半径为3,单位向量
e
所在的直线与圆相切于定点A,点B是圆上的动点,则
e
AB
的最大值为
3
3
分析:
e
AB
的夹角为θ,过C作CM⊥AB,则AB=2AM,然后结合弦切角定理可得∠DAB=∠ACM=θ,再利用三角函数的定义可用θ表示AM,代入向量的数量积的定义
e
AB
=|
e
||
AB
|cosθ,最后结婚二倍角公式及正弦函数的性质即可求解
解答:解:设
e
AB
的夹角为θ
过C作CM⊥AB,垂足为M,则AB=2AM
由过点A的直线与圆相切,结合弦切角定理可得∠DAB=∠ACM=θ
∵在直角三角形AMC中,由三角函数的定义可得,sin∠ACM=sinθ=
AM
3

∴AM=3sinθ,AB=6sinθ
e
AB
=|
e
||
AB
|cosθ=|AB|cosθ=6sinθcosθ=3sin2θ≤3
当sin2θ=1即θ=45°时取等号
故答案为:3
点评:本题主要考查了向量的数量积的定义,弦切角定理及三角函数的定义的综合应用,试题具有一定的灵活性
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•普陀区二模)已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
11-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)若关于x的方程F(x)-m=0在区间[0,1)内有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•普陀区二模)函数y=
log2(x-1)
的定义域为
[2,+∞)
[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•普陀区二模)已知双曲线C:
x2
a2
-
y2
b2
=1
的焦距为10,点P(2,1)在C的渐近线上,则C的方程为
x2
20
-
y2
5
=1
x2
20
-
y2
5
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•普陀区二模)若函数f(x)=x2+ax+1是偶函数,则函数y=
f(x)|x|
的最小值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•普陀区二模)已知函数f(x)=Acos(ωx+?)(A>0,ω>0,-
π
2
<?<0
)的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+2π,-2)
(1)求函数f(x)的解析式;
(2)若锐角θ满足cosθ=
1
3
,求f(2θ)的值.

查看答案和解析>>

同步练习册答案