精英家教网 > 高中数学 > 题目详情

【题目】某研究机构为了了解大学生对冰壶运动的兴趣,随机从某校学生中抽取了100人进行调查,经统计男生与女生的人数比为,男生中有20人表示对冰壶运动有兴趣,女生中有15人对冰壶运动没有兴趣.

1)完成列联表,并判断能否有把握认为“对冰壶运动是否有兴趣与性别有关”?

有兴趣

没有兴趣

合计

20

15

合计

100

2)用分层抽样的方法从样本中对冰壶运动有兴趣的学生中抽取6人,求抽取的男生和女生分别为多少人?若从这6人中选取两人作为冰壶运动的宣传员,求选取的2人中恰好有1位男生和1位女生的概率.

附:参考公式1.);2.,其中

0.150

0.100

0.050

0.025

0.010

2.072

2.076

3.841

5.024

6.635

【答案】1列联表答案见解析,有把握认为“对冰壶运动是否有兴趣与性别有关”;(2)抽取的男生数女生数分别为:;概率为.

【解析】

1)根据题中数据,先完善列联表,再由的计算公式,求出,根据临界值表,即可得出结果;

2)根据分层抽样,先确定抽取的男生数女生数分别为:24;记2名男生为;女生为,用列举的方法列举出从中抽取2人所包含的基本事件,以及“选取的2人中恰好有1位男生和1位女生”所包含的基本事件,基本事件个数之比即为所求概率.

解:(1)根据题意得如下列联表:

有兴趣

没有兴趣

合计

20

25

45

40

15

55

合计

60

40

100

所以

所以有把握认为“对冰壶运动是否有兴趣与性别有关”,

2)对冰壶运动有兴趣的学生共60人,从中抽取6人,抽取的男生数女生数分别为:

.

2名男生为;女生为,则从中选取2人的基本事件

为:15个,

其中含有11女的基本事件为:8

记“对冰壶运动有兴趣的学生中抽取6人做宣传员,恰好一男一女”的事件为,则

所以选取的2人中恰好有1位男生和1位女生的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】目前,新冠病毒引发的肺炎疫情在全球肆虐,为了解新冠肺炎传播途径,采取有效防控措施,某医院组织专家统计了该地区500名患者新冠病毒潜伏期的相关信息,数据经过汇总整理得到如图所示的频率分布直方图(用频率作为概率).潜伏期不高于平均数的患者,称为“短潜伏者”,潜伏期高于平均数的患者,称为“长潜伏者”.

1)求这500名患者潜伏期的平均数(同一组中的数据用该组区间的中点值作代表),并计算出这500名患者中“长潜伏者”的人数;

2)为研究潜伏期与患者年龄的关系,以潜伏期是否高于平均数为标准进行分层抽样,从上述500名患者中抽取300人,得到如下表格.

i)请将表格补充完整;

短潜伏者

长潜伏者

合计

60岁及以上

90

60岁以下

140

合计

300

ii)研究发现,某药物对新冠病毒有一定的抑制作用,现需在样本中60岁以下的140名患者中按分层抽样方法抽取7人做I期临床试验,再从选取的7人中随机抽取两人做Ⅱ期临床试验,求两人中恰有1人为“长潜伏者”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一批产品共10件,其中3件是不合格品,用下列两种不同方式从中随机抽取2件产品检验:

方法一:一次性随机抽取2件;

方法二:先随机抽取1件,放回后再随机抽取1.

记方法一抽取的不合格产品数为.记方法二抽取的不合格产品数为.

1)求两种抽取方式下的概率分布列;

2)比较两种抽取方式抽到的不合格品平均数的大小?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个结论中正确的个数是

(1)对于命题使得,则都有

(2)已知,则

(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为

(4)“”是“”的充分不必要条件.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年春节期间,某超市准备举办一次有奖促销活动,若顾客一次消费达到400元则可参加一次抽奖活动,超市设计了两种抽奖方案.

方案一:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得60元的返金券,若抽到白球则获得20元的返金券,且顾客有放回地抽取3次.

方案二:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得80元的返金券,若抽到白球则未中奖,且顾客有放回地抽取3次.

(1)现有两位顾客均获得抽奖机会,且都按方案一抽奖,试求这两位顾客均获得180元返金券的概率;

(2)若某顾客获得抽奖机会.

①试分别计算他选择两种抽奖方案最终获得返金券的数学期望;

②为了吸引顾客消费,让顾客获得更多金额的返金券,该超市应选择哪一种抽奖方案进行促销活动?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)当为自然对数的底数)时,求的最小值;

2)讨论函数零点的个数;

3)若对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图如示的多面体中,平面平面,四边形是边长为的正方形, ,.

1)若分别是中点,求证: ∥平面

2)求此多面体的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的参数方程为为参数),以直角坐标系的原点为极点,轴正半轴为极轴建立极坐标系.

(1)求圆的极坐标方程;

(2)设曲线的极坐标方程为,曲线的极坐标方程为,求三条曲线所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆为椭圆的左、右焦点,为椭圆上一点,且.

1)求椭圆的标准方程;

2)设直线,过点的直线交椭圆于两点,线段的垂直平分线分别交直线、直线两点,当最小时,求直线的方程.

查看答案和解析>>

同步练习册答案