精英家教网 > 高中数学 > 题目详情
20.已知等差数列{an}的前n项和为Sn,a5=5,S5=15.
(1)求数列{an}的通项公式;
(2)求数列{2n•an}的前n项和Tn

分析 (1)通过等差数列的求和公式S5=$\frac{5({a}_{1}+{a}_{5})}{2}$计算可知a1=1,进而可求出d=$\frac{{a}_{5}-{a}_{1}}{5-1}$,计算即得结论;
(2)通过(1)可知2n•an=n•2n,利用错位相减法计算即得结论.

解答 解:(1)依题意,S5=15=$\frac{5({a}_{1}+{a}_{5})}{2}$=$\frac{5({a}_{1}+5)}{2}$,
解得:a1=1,d=$\frac{{a}_{5}-{a}_{1}}{5-1}$=$\frac{5-1}{5-1}$=1,
∴数列{an}是首项、公差均为1的等差数列,
∴数列{an}的通项公式an=n;
(2)由(1)可知2n•an=n•2n
∴Tn=1•2+2•22+…+n•2n,2Tn=1•22+2•23+…+(n-1)•2n+n•2n+1
错位相减得:-Tn=2+22+23+…+2n-n•2n+1
∴Tn=n•2n+1-(2+22+23+…+2n)=n•2n+1-$\frac{2(1-{2}^{n})}{1-2}$=2+(n-1)•2n+1

点评 本题考查数列的通项及前n项和,考查运算求解能力,利用错位相减法是解决本题的关键,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知定义在R上的函数y=f(x)满足以下三个条件:
①对于任意的x∈R,都有f(x+4)=f(x);        
②对于任意的x1,x2∈R,且0≤x1<x2≤2,都有f(x1)<f(x2);
③函数y=f(x+2)的图象关于y轴对称   
则下列结论中正确的是(  )
A.f (4.5)<f (7)<f (6.5)B.f (7)<f (4.5)<f (6.5)C.f (7)<f (6.5)<f (4.5)D.f (4.5)<f (6.5)<f (7)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x+3,x≤0}\\{-{x}^{2}-2x-3,x>0}\end{array}\right.$如果f(m+1)+f(3-2m)<0,那么实数m的取值范围为(-∞,4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)=lg(2x+2-x),下列命题:①定义域为R;②值域为R;③在定义域上为偶函数;④在(-∞,0)上为减函数;⑤函数g(x)=f(x)-2恰有两个零点.其中正确命题是①③④⑤.(只要填写正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=ax-(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.
(1)求实数k的值.
(2)若f(1)<0,试判断并证明函数f(x)的单调性;
(3)若f(1)=$\frac{3}{2}$,且g(x)=a2x+a-2x-2mf(x)在区间[1,∞)上的最小值为-2,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.不等式(x-3)-2>(2x+1)-2的解集为{x|x>$\frac{2}{3}$或x<-4且x≠3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的各项均为正,Sn为数列{an}的前n项和,an2+2an=4Sn+3.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=$\frac{{a}_{n}}{{3}^{n}}$,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x\\;x≥1}\\{{2}^{x}\\;x<1}\end{array}\right.$的值域为(  )
A.(-∞,0]B.(-∞,2)C.[0,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四面体ABCD中,已知∠ABD=∠CBD=60°,AB=BC=2,
(Ⅰ) 求证:AC⊥BD;
(Ⅱ)若平面ABD⊥平面CBD,且BD=$\frac{5}{2}$,求二面角C-AD-B的余弦值.

查看答案和解析>>

同步练习册答案