精英家教网 > 高中数学 > 题目详情
15.已知不等式ax2+bx+c>0(a≠0)的解集为{x|m<x<n},且m>0,则不等式cx2+bx+a<0的解集为(  )
A.($\frac{1}{n}$,$\frac{1}{m}$)B.($\frac{1}{m}$,$\frac{1}{n}$)C.(-∞,$\frac{1}{n}$)∪($\frac{1}{m}$,+∞)D.(-∞,$\frac{1}{m}$)∪($\frac{1}{n}$,+∞)

分析 依题意,a<0,m+n=-$\frac{b}{a}$,mn=$\frac{c}{a}$>0,从而可求得b,c,代入cx2+bx+a<0即可求得答案.

解答 解:∵不等式ax2+bx+c>0的解集为(m,n)(0<m<n),
∴a<0,m+n=-$\frac{b}{a}$,mn=$\frac{c}{a}$,
∴b=-a(m+n),c=amn,
∴cx2+bx+a<0?amnx2-a(m+n)x+a<0,
∵a<0,
∴mnx2-(m+n)x+1>0,
即(mx-1)(nx-1)>0,又0<m<n,
∴$\frac{1}{m}$>$\frac{1}{n}$,
∴x>$\frac{1}{m}$或x<$\frac{1}{n}$,
故不等式cx2+bx+a<0的解集是(-∞,$\frac{1}{n}$)∪($\frac{1}{m}$,+∞).
故选:C.

点评 本题考查,一元二次不等式的解法,求得b=-a(m+n),c=amn(a<0),是关键,考查转化与运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设a∈R,则“a=2或a=-2”是“直线l1:x+ay+3=0与直线l2:ax+4y+6=0平行”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系xOy中,圆C的方程为(x-2)2+y2=9.
(1)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,求C的极坐标方程.
(2)直线L的参数方程为$\left\{\begin{array}{l}x=tcosα\\ y=tsinα\end{array}\right.$(t为参数),L交C于A、B两点,且$|{AB}|=2\sqrt{7}$,求L的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设变量x,y满足约束条件$\left\{\begin{array}{l}x≥0\\ x+3y≥4\\ 3x+y≤4\end{array}\right.$,则目标函数z=x+2y的最小值为$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=x2-(3k+2k)x+3k•2k,x∈R;
(1)若f(1)≤0,求实数k的取值范围;
(2)若k为正整数,设f(x)≤0的解集为[a2k-1,a2k],求a1+a2+a3+a4及数列{an}的前2n项和S2n
(3)对于(2)中的数列{an},设${b_n}=\frac{{{{(-1)}^n}}}{{{a_{2n-1}}{a_{2n}}}}$,求数列{bn}的前n项和Tn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)是定义在R上的增函数,函数y=f(x-1)的图象关于点(1,0)对称,若实数m,n满足等式$f(n-3)+f(\sqrt{4m-{m^2}-3})=0$,则$\frac{n}{m}$的取值范围是(  )
A.$[2-\frac{{2\sqrt{3}}}{3},2+\frac{{2\sqrt{3}}}{3}]$B.$[1,2+\frac{{2\sqrt{3}}}{3}]$C.$[2-\frac{{2\sqrt{3}}}{3},3]$D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD的底面ABCD是平行四边形,PA=PB=PC=6,∠APB=∠BPC=∠CPA=90°,AC∩BD=E.
(Ⅰ)证明:AC⊥面PDB;
(Ⅱ)在图中作出E点在面PAB的投影F,说明作法及其理由,并求三棱锥D-AEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.抛物线y2=2px(p>0)的焦点为F,弦AB过F点且倾斜角为60°,|AF|>|BF|,则$\frac{{|{AF}|}}{{|{BF}|}}$的值为(  )
A.2B.3C.4D.1.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,三个内角A、B、C所对的边分别为a、b、c,已知A=$\frac{π}{3}$,c=4,△ABC的面积为2$\sqrt{3}$,则a=$2\sqrt{3}$.

查看答案和解析>>

同步练习册答案