精英家教网 > 高中数学 > 题目详情
1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2$\sqrt{3}$,长轴长为4.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)如图,过坐标原点O作两条互相垂直的射线,与椭圆C交于A,B两点.设A(x1,y1),B(x2,y2),直线AB的方程为y=-2x+m(m>0),试求m的值.

分析 (Ⅰ)利用椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2$\sqrt{3}$,长轴长为4,求出椭圆的几何量,可得椭圆C的标准方程;
(Ⅱ)直线AB、联立椭圆方程,消去y,运用韦达定理,由OA⊥OB,则有x1x2+y1y2=0,化简整理即可求m的值.

解答 解:(Ⅰ)∵椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2$\sqrt{3}$,长轴长为4,
∴c=$\sqrt{3}$,a=2,
∴b=1,
∴椭圆C的标准方程为$\frac{{x}^{2}}{4}+{y}^{2}$=1;
(Ⅱ)直线AB的方程为y=-2x+m(m>0),代入椭圆方程得
17x2-16mx+4m2-4=0,
则x1+x2=$\frac{16m}{17}$,x1x2=$\frac{4{m}^{2}-4}{17}$,①
由OA⊥OB,
知x1x2+y1y2=x1x2+(-2x1+m)(-2x2+m)
=5x1x2-2m(x1+x2)+m2=0,
将①代入,得5×$\frac{4{m}^{2}-4}{17}$-2m×$\frac{16m}{17}$+m2=0,
∵m>0,
∴m=2.

点评 本题考查椭圆的方程和运用,考查直线方程和椭圆方程联立,消去未知数,考查韦达定理的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在某种产品表面进行腐蚀性试验,得到腐蚀深度y与腐蚀时间x之间对应的一组数据:
时间x(s)23456
深度y(μm)2.23.85.56.57.0
(1)在所给的坐标系中画出散点图;
(2)如果y对x有线性相关关系,请用最小二乘法求y关于x的回归直线方程;
(3)估计x=12时,腐蚀深度约是多少?
参考公式:用最小二乘法求线性回归方程系数公式:$\hat b$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$$,\hat a$=$\overline y$-$\hat b\overline x$.
参考数据:22+32+42+52+62=90,2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.y=$\frac{\sqrt{sinx}+lgcosx}{tanx}$的定义域为(2kπ,$\frac{π}{2}$+2kπ),k∈Z..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,若$\overrightarrow{AC}$2=$\overrightarrow{AB}$•$\overrightarrow{AC}$+$\overrightarrow{BA}$•$\overrightarrow{BC}$+$\overrightarrow{CA}$•$\overrightarrow{CB}$,则△ABC是(  )
A.等边三角形B.锐角三角形C.钝角三角形D.直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知椭圆$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{9}$=1(m为实数)的左焦点为(-4,0),则该椭圆的离心率为(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{5}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.甲、乙、丙、丁四个人去旅游,可供选择的景点有3个,每人只能选择一个景点且甲、乙不能同去一个景点,则不同的选择方案的种数是(  )
A.54B.36C.27D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某工厂有甲乙两个车间,每个车间各有3台机器.甲车间每台机器每天发生故障的概率均为$\frac{2}{5}$,乙车间3台机器每天发生故障的概率分别为$\frac{1}{5}$,$\frac{1}{5}$,$\frac{3}{5}$.若一天内同一车间的机器都不发生故障可获利2万元,恰有一台机器发生故障仍可获利1万元,恰有两台机器发生故障的利润为0万元,三台机器发生故障要亏损3万元.
(Ⅰ)求乙车间每天机器发生故障的台数的分布列;
(Ⅱ)由于节能减排,甲乙两个车间必须停产一个.以工厂获得利润的期望值为决策依据,你认为哪个车间停产比较合理.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.曲线y=cosx在点($\frac{π}{3}$,$\frac{1}{2}$)处的切线的斜率为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,两个变量具有相关关系的是(  )
A.(1)(3)B.(1)(4)C.(2)(4)D.(2)(3)

查看答案和解析>>

同步练习册答案