精英家教网 > 高中数学 > 题目详情

【题目】设函数,若方程恰有两个不相等的实根,则的最大值为( )

A. B. C. D.

【答案】C

【解析】g(x)=f(f(x))=

y=f(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,

g(x)=f(f(x))在(﹣∞,0)上单调递减,在(0,+∞)上单调递增.

做出g(x)=f(f(x))的函数图象如图所示:

∵方程f(f(x))=a(a>0)恰有两个不相等的实根x1,x2

不妨设x1<x2,则x1≤﹣1,x2≥0,且f(x1)=f(x2),即x12=

h(x1)=,则h′(x1)=

∴当x1<﹣2时,h′(x1)>0,当﹣2<x1<﹣1时,h′(x1)<0,

h(x1)在(﹣∞,﹣2)上单调递增,在(﹣2,﹣1)上单调递减,

∴当x1=﹣2时,h(x1)取得最大值h(﹣2)=

故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法:

将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;

设有一个回归方程,变量增加一个单位时, 平均增加个单位;

老师在某班学号为1~5050名学生中依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是系统抽样;

其中正确的个数是(  )

A. B. 2 C. D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中, 平面 平面 ,又

1)求 与平面所成角的正弦值;

2)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从抛物线y2=32x上各点向x轴作垂线,其垂线段中点的轨迹为E.

(1)求轨迹E的方程;

(2)已知直线ly=kx-2)(k>0)与轨迹E交于A,B两点,且点F(2,0),若|AF|=2|BF|,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与圆,点在圆上,点在圆上.

(1)求的最小值;

(2)直线上是否存在点,满足经过点由无数对相互垂直的直线,它们分别与圆和圆相交,并且直线被圆所截得的弦长等于直线被圆所截得的弦长?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|a﹣1≤x≤2a+3},B={x|﹣2≤x≤4},全集U=R
(1)当a=2时,求A∪B和(RA)∩B;
(2)若A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数 是奇函数.
(1)求a值;
(2)判断并证明该函数在定义域R上的单调性;
(3)设关于x的函数F(x)=f(4x﹣b)+f(﹣2x+1)有零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四面体中, ,二面角的余弦值是,则该四面体外接球的表面积是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(1+x),g(x)=loga(1﹣x)其中(a>0且a≠1),设h(x)=f(x)﹣g(x).
(1)求函数h(x)的定义域,判断h(x)的奇偶性,并说明理由;
(2)若f(3)=2,求使h(x)<0成立的x的集合.

查看答案和解析>>

同步练习册答案