精英家教网 > 高中数学 > 题目详情

【题目】某粮食店经销小麦,年销售量为6000千克,每千克小麦进货价为2.8元,销售价为3.4元,全年进货若干次,每次的进货量均为千克(),运费为100/次,并且全年小麦的总存储费用为元.

1)用(千克)表示该粮食店经销小麦的年利润(元);

2)每次进货量为多少千克时,能使年利润最大?

【答案】1.21000千克

【解析】

1)由年销售总量为包,每次进货均为包,可得进货次数,进而根据每包进价为元,销售价为元,计算出收入,由运费为/次,全年保管费为元计算出成本,相减可得利润的表达式;

2)由(1)中函数的解析式,由函数的单调性,结合的实际意义,可得利润最大时,每次进货量.

1)由题意可知:一年总共需要进货)次

整理得:

2

上递减

(千克)时,年利润最大

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等差数列与等比数列是非常数的实数列,设.

(1)请举出一对数列,使集合中有三个元素;

(2)问集合中最多有多少个元素?并证明你的结论;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体ABCDA'B'C'D'棱长为2,并且EF分别是棱AA'CC'的中点.

(Ⅰ)求证:平面BED'F⊥平面BB'D'D

(Ⅱ)求直线A'B'与平面BED'F所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆经过点,左、右焦点分别是点在椭圆上,且满足点只有两个.

(Ⅰ)求椭圆的方程;

(Ⅱ)过且不垂直于坐标轴的直线交椭圆两点,在轴上是否存在一点,使得的角平分线是轴?若存在求出,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4。

  1. 求椭圆的方程;
  2. 设直线与椭圆相交于不同的两点,已知点的坐标为(),点在线段的垂直平分线上,且,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某学校的特长班有50名学生,其中有体育生20名,艺术生30名,在学校组织的一次体检中,该班所有学生进行了心率测试,心率全部介于50次/分到75次/分之间,现将数据分成五组,第一组[50,55),第二组[55,60),…,第五组[70,75],按上述分组方法得到的频率分布直方图如图所示.因为学习专业的原因,体育生常年进行系统的身体锻炼,艺术生则很少进行系统的身体锻炼,若前两组的学生中体育生有8名.

(1)根据频率分布直方图及题设数据完成下列2×2列联表.

心率小于60次/分

心率不小于60次/分

合计

体育生

20

艺术生

30

合计50

(2)根据(1)中表格数据计算可知,________(填“有”或“没有”)99.5%的把握认为“心率小于60次/分与常年进行系统的身体锻炼有关”.

P(K2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1A2A3A4A5A6和4名女志愿者B1B2B3B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.

(I)求接受甲种心理暗示的志愿者中包含A1但不包含的频率。

(II)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,

(1)求在区间上的极小值和极大值;

(2)求为自然对数的底数)上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从集市上买回来的蔬菜仍存有残留农药,食用时需要清洗数次,统计表中的表示清洗的次数,表示清洗次后千克该蔬菜残留的农药量(单位:微克).

(1)在如图的坐标系中,描出散点图,并根据散点图判断,哪一个适宜作为清洗次后千克该蔬菜残留的农药量的回归方程类型;(给出判断即可,不必说明理由)

(2)根据判断及下面表格中的数据,建立关于的回归方程;

表中.

(3)对所求的回归方程进行残差分析.

附:①线性回归方程中系数计算公式分别为

说明模拟效果非常好;

.

查看答案和解析>>

同步练习册答案