精英家教网 > 高中数学 > 题目详情
已知曲线C1:y=
x2
e
+e(e为自然对数的底数),曲线C2:y=2elnx和直线m:y=2x.
(I)求证:直线m与曲线C1、C2都相切,且切于同一点;
(II)设直线x=t(t>0)与曲线C1、C2及直线m分别交于M、N、P,记f(t)=|MP|-|PN|,求f(t)在[e-3,e3]上的最大值.
(I)对于曲线C1y=
x2
e
+e
,设切点P(a,b),有
2a
e
=2
∴a=e,故切点为P(e,2e),
切线:y-2e=2(x-e),即y=2x.所以直线m与曲线C1相切于点P(e,2e)
同理可证直线m与曲线C2也相切于点P(e,2e).
(II)由题意易得M(t,
t2
e
+e
),N(t,2elnt),P(t,2t)
∴由两点间的距离公式可得|MP|=
t2
e
+e-2t
,|PN|=2t-2elnt
∴f(t)=
t2
e
+2elnt-4t+e(e-3≤t≤e3)

f(t)=
2t
e
+
2e
t
-4
=
2(t-e)2
t
≥0
∴f(t)在[e-3,e3]上单调增,故ymax=f(e3)=e5-4e3+7e.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知曲线C1:y=x3(x≥0)与曲线C2:y=-2x3+3x(x≥0)交于O,A,直线x=
1
3
与曲线C1,C2分别交于B,D.则四边形ABOD的面积S为(  )
A、
4
9
B、
3
C、2
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1:y=
1
3
x3-3x+
4
3
,曲线C2:y=x2-
9
2
x+m
,若当x∈[-2,2]时,曲线C1在曲线C2的下方,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线c1:y=ex,曲线c2:y=cosx,则由曲线c1,c2和直线x=
π
2
在第一象限所围成的封闭图形的面积为
e
π
2
-2
e
π
2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)选修4-4:矩阵与变换
已知曲线C1:y=
1
x
绕原点逆时针旋转45°后可得到曲线C2:y2-x2=2,
(I)求由曲线C1变换到曲线C2对应的矩阵M1;    
(II)若矩阵M2=
20
03
,求曲线C1依次经过矩阵M1,M2对应的变换T1,T2变换后得到的曲线方程.
(2)选修4-4:坐标系与参数方程
已知直线l的极坐标方程是ρcosθ+ρsinθ-1=0.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,在曲线C:
x=-1+cosθ
y=sinθ
(θ为参数)上求一点,使它到直线l的距离最小,并求出该点坐标和最小距离.
(3)(选修4-5:不等式选讲)
将12cm长的细铁线截成三条长度分别为a、b、c的线段,
(I)求以a、b、c为长、宽、高的长方体的体积的最大值;
(II)若这三条线段分别围成三个正三角形,求这三个正三角形面积和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1:y=x2-1与x轴相交于A,B两点,与y轴相交于点C,圆C2经过A,B,C三点.
(1)求圆C2的方程;
(2)过点P(0,m)(m<-1)的直线l与圆C2相切,试探讨直线l与曲线C1的位置关系.

查看答案和解析>>

同步练习册答案