精英家教网 > 高中数学 > 题目详情
如图在三棱柱与四棱锥的组合体中,已知平面,四边形是平行四边形,
(1)设是线段的中点,求证:∥平面
(2)求直线与平面所成的角。
(1)略 (2)45°
本试题主要考查了立体几何中线面平行和线面角的求解的综合运用。
解:(1)证明:取B1D1的中点E,连结AE,C1E,OA,OC′,则A,O,C共线,且C1E=OA,
因为BCD-B1C1D1为三棱柱,所以平面BCD∥平面B1C1D1,故C1E∥OA,所以C1EAO为平行四边形,从而C1O∥EA.又因为C1O?平面AB1D1,EA?平面AB1D1,所以C1O∥平面AB1D1.

(2)过B1在平面B1C1D1内作B1A1∥C1D1,使B1A1=C1D1.
连结A1D1,AA1.过B1作A1D1的垂线,垂足为F,连接AF,则B1F⊥平面ADD1,所以∠B1AF为AB1与平面ADD1所成的角.在Rt△A1B1F中,B1F=A1B1·sin 60°=.
在Rt△AB1F中,AB1,故sin∠B1AF=,所以∠B1AF=45°.
即直线AB1与平面ADD1所成角的大小为45°
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
正四棱柱ABCD—A1B1C1D1中,已知AB=2,E,F分别是D1B,AD的中点,
(1)建立适当的坐标系,求出E点的坐标;
(2)证明:EF是异面直线D1B与AD的公垂线;
(3)求二面角D1—BF—C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在正三棱柱中,底面边长为,侧棱长为是棱的中点.

 

 
(Ⅰ)求证:平面

(Ⅱ)求二面角的大小;
(Ⅲ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

二面角α—EF—β是直二面角,C∈EF,AC α,BCβ,∠ACF=30°
∠ACB=60°,则∠BCF等于     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)已知正方体的棱长为1,点上,点上,且
(1)求直线与平面所成角的余弦值;
(2)用表示平面和侧面所成的锐二面角的大小,求
(3)若分别在上,并满足,探索:当的重心为时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正三棱柱ABCA1B1C1的底面边长为a,点M在边 BC上,△AMC1是以点M为直角顶点的等腰直角三角形。
(Ⅰ)求证点M为边BC的中点;
(Ⅱ)求点C到平面AMC1的距离;
(Ⅲ)求二面角M—AC1—C的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体中,是正方形ABCD的中心,分别是的中点,  异面直线所成的角的余弦值是(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

梯形中,,如图①;现将其沿折成如图②的几何体,使得.
(Ⅰ)求直线与平面所成角的大小;(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若三条射线OAOBOC两两成角60°,则直线OA与平面OBC所成角的余弦值为    
A.B.C.D.

查看答案和解析>>

同步练习册答案