精英家教网 > 高中数学 > 题目详情

【题目】秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为(  )
A.35
B.20
C.18
D.9

【答案】C
【解析】解:∵输入的x=2,n=3,
故v=1,i=2,满足进行循环的条件,v=4,i=1,
满足进行循环的条件,v=9,i=0,
满足进行循环的条件,v=18,i=﹣1
不满足进行循环的条件,
故输出的v值为:
故选:C
根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量v的值,模拟程序的运行过程,可得答案;本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数(其中a为常数).

(1)当a=1时,求fx)在上的值域;

(2)若当x∈[0,1]时,不等式恒成立,求实数a的取值范围;

(3)设,是否存在正数a,使得对于区间上的任意三个实数mnp,都存在以fgm)),fgn)),fgp))为边长的三角形?若存在,试求出这样的a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣2)ex+a(x﹣1)2有两个零点.
(1)求a的取值范围;
(2)设x1 , x2是f(x)的两个零点,证明:x1+x2<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.

(1)求证:DC⊥平面PAC;
(2)求证:平面PAB⊥平面PAC;
(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3+ax2+bx+c.
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)设a=b=4,若函数f(x)有三个不同零点,求c的取值范围;
(3)求证:a2﹣3b>0是f(x)有三个不同零点的必要而不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的序号是__________________.(写出所有正确的序号)

正切函数在定义域内是增函数;

已知函数的最小正周期为,的图象向右平移个单位长度,所得图象关于轴对称,的一个值可以是

,三点共线;④函数的最小值为

函数上是增函数,的取值范围是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABCD与ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点求证:

1BE平面DMF;

2平面BDE平面MNG

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=log4(22x+1)+mx的图象经过点 .

(Ⅰ)求m值并判断的奇偶性;

(Ⅱ)设gx)=log4(2x+x+afx),若关于x的方程fx)=gx)在x∈[-2,2]上有且只有一个解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有两直线,当a在区间内变化时,求直线与两坐标轴围成的四边形面积的最小值.

查看答案和解析>>

同步练习册答案