精英家教网 > 高中数学 > 题目详情
如图,四棱锥S?ABCD中,底面ABCD是正方形,SA⊥面ABCD,且SA=AB,M、N分别为SB、SD中点,求证:
(1)DB平面AMN.
(2)SC⊥平面AMN.
证:(1)∵M,N分别为SB,SD的中点
∴MNBD∵MN?面AMN,BD?面AMN
∴BD平面AMN
(2)∵SA⊥平面ABCD,AC⊥BD
∴SC⊥BD∴SC⊥MN
又∵CD⊥AD,SA⊥CD
∴CD⊥平面SAD,∴CD⊥AN,
又AN为等腰直角三角形SAD斜边中线,所以AN⊥SD
∴AN⊥平面SCD∴AN⊥SC
∴SC⊥平面AMN.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知一个四棱锥P-ABCD的三视图(正视图与侧视图为直角三角形,俯视图是带有一条对角形的正方形)如下,E是侧棱PC上的动点.
(1)求四棱锥P-ABCD的体积;
(2)是否不论点E在何位置都有BD⊥AE,证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥S-ABCD中,侧棱SA⊥底面ABCD,且底面ABCD是边长为2的正方形,SA=2,AC与BD相交于点O.
(1)证明:SO⊥BD;
(2)求三棱锥O-SCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,BC是Rt△ABC的斜边,AP⊥平面ABC,连接PB、PC,作PD⊥BC于D,连接AD,则图中共有直角三角形______个.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分PC,且分别交AC、PC于D、E两点,又PB=BC,PA=AB.
(Ⅰ)求证:PC⊥平面BDE;
(Ⅱ)若点Q是线段PA上任一点,求证:BD⊥DQ;
(Ⅲ)求线段PA上点Q的位置,使得PC平面BDQ.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M、N分别是A1B、B1C1的中点.
(Ⅰ)求证:MN⊥平面A1BC;
(Ⅱ)求直线BC1和平面A1BC所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥S-ABCD中,底面ABCD是正方形,四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC上一点.
(1)当E为侧棱SC的中点时,求证:SA平面BDE;
(2)求证:平面BED⊥平面SAC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正三棱柱ABC-A1B1C1,D为棱CC1上任意一点,E为BC中点,F为B1C1的中点,证明:
(1)A1F平面ADE;
(2)平面ADE⊥平面BCC1B1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面是矩形,侧面PAB是等边三角形,且侧面PAB⊥底面ABCD,
(1)求证:BC⊥侧面PAB;
(2)求证:侧面PAD⊥侧面PAB.

查看答案和解析>>

同步练习册答案