精英家教网 > 高中数学 > 题目详情
已知a∈R,且α≠kπ+
π
2
,k∈Z设直线l:y=xtanα+m,其中m≠0,给出下列结论:
①l的倾斜角为arctan(tanα);
②l的方向向量与向量
a
=(cosα,sinα)
共线;
③l与直线xsinα-ycosα+n=0(n≠m)一定平行;
④若0<a<
π
4
,则l与y=x直线的夹角为
π
4

⑤若α≠kπ+
π
4
,k∈Z,与l关于直线y=x对称的直线l'与l互相垂直.
其中真命题的编号是______(写出所有真命题的编号)
①当直线l的倾斜角为锐角时,倾斜角为arctan(tanα),当为钝角时应为π-arctan(tanα),故错误;
②直线l的方向向量为
b
=(1,tanα),显然有1×sinα-cosα•tanα=0,即两向量共线,故正确;
③由②得知识可知两直线的方向向量共线,但直线有可能平行或重合,故错误;
④由直线倾斜角的定义可知:直线y=x与x轴的正方向的夹角为
π
4
,又0<a<
π
4
,则l与y=x直线的夹角为
π
4
,故正确;
⑤若α≠kπ+
π
4
,k∈Z,与l关于直线y=x对称的直线l'与l不一定互相垂直,比如α=
π
6
,则l′的倾斜角为
π
3
,显然不垂直,故错误.
故答案为:②④
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax2-bx+1(a,b∈R),F(x)=
f(x),x>0
-f(x),x<0

(1)如果f(1)=0且对任意实数x均有f(x)≥0,求F(x)的解析式;
(2)在(1)在条件下,若g(x)=f(x)-kx在区间[-3,3]是单调函数,求实数k的取值范围;
(3)已知a>0且f(x)为偶函数,如果m+n>0,求证:F(m)+F(n)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,且α≠kπ+
π
2
,k∈Z设直线l:y=xtanα+m,其中m≠0,给出下列结论:
①l的倾斜角为arctan(tanα);
②l的方向向量与向量
a
=(cosα,sinα)
共线;
③l与直线xsinα-ycosα+n=0(n≠m)一定平行;
④若0<a<
π
4
,则l与y=x直线的夹角为
π
4

⑤若α≠kπ+
π
4
,k∈Z,与l关于直线y=x对称的直线l'与l互相垂直.
其中真命题的编号是
②④
②④
(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南省开封市龙亭区河南大学附属中学高一(上)期中数学试卷(解析版) 题型:解答题

设函数f(x)=ax2-bx+1(a,b∈R),
(1)如果f(1)=0且对任意实数x均有f(x)≥0,求F(x)的解析式;
(2)在(1)在条件下,若g(x)=f(x)-kx在区间[-3,3]是单调函数,求实数k的取值范围;
(3)已知a>0且f(x)为偶函数,如果m+n>0,求证:F(m)+F(n)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知a∈R,且数学公式,k∈Z设直线l:y=xtanα+m,其中m≠0,给出下列结论:
①l的倾斜角为arctan(tanα);
②l的方向向量与向量数学公式共线;
③l与直线xsinα-ycosα+n=0(n≠m)一定平行;
④若数学公式,则l与y=x直线的夹角为数学公式
⑤若数学公式,k∈Z,与l关于直线y=x对称的直线l'与l互相垂直.
其中真命题的编号是________(写出所有真命题的编号)

查看答案和解析>>

同步练习册答案