精英家教网 > 高中数学 > 题目详情
7.如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于点F,且点F在CE上.
(1)求证:AE⊥BE;
(2)求三棱锥C-ADE的体积.

分析 (1)推导出BC⊥平面ABE,从而AE⊥BC,再求出AE⊥BF,从而AE⊥平面BEC,由此能证明AE⊥BE.
(2)作EH⊥AB,三棱锥C-ADE的体积VC-ADE=VE-ACD,由此能求出结果.

解答 证明:(1)∵DA⊥平面ABE,BC∥DA,
∴BC⊥平面ABE,
∵AE?平面ABE,∴AE⊥BC,…(1分)
∵BF⊥平面ACE于点F,AE?平面ACE,
∴AE⊥BF,…(2分)
∵BC∩BF=B,…(3分)
BC?平面BEC,BF?平面BEC,∴AE⊥平面BEC,
∵BE?平面BEC,∴AE⊥BE.…(4分)
解:(2)作EH⊥AB,…(5分)
∵DA⊥平面ABE,EH?平面ABE,∴AD⊥EH,…(6分)
AD∩AB=A,AD?平面ABCD,AB?平面ABCD,
∴EH⊥平面ABCD,…(7分)
由(1)得AE⊥BE,AE=EB=BC=2,
AB=2$\sqrt{2}$,EH=$\sqrt{2}$,…(8分)
∴三棱锥C-ADE的体积VC-ADE=VE-ACD=$\frac{1}{3}EH•{S}_{△ACD}$=$\frac{1}{3}×\sqrt{2}×\frac{1}{2}×2×2\sqrt{2}$=$\frac{4}{3}$.…(10分)

点评 本题考查线线垂直的证明,考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.倾斜角为120°且在y轴上的截距为-2的直线方程为(  )
A.y=-$\sqrt{3}$x+2B.y=-$\sqrt{3}$x-2C.y=$\sqrt{3}$x+2D.y=$\sqrt{3}$x-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若tan($α+\frac{π}{3}$)=2$\sqrt{3}$,则tan($α-\frac{2π}{3}$)的值是2$\sqrt{3}$,2sin2α-cos2α 的值是-$\frac{43}{52}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.关于直线l,m及平面α,β,下列命题中正确的是(  )
A.若l∥α,α∩β=m,则l∥mB.若l∥α,m∥α,则l∥m
C.若l⊥α,m∥α,则l⊥mD.若l∥α,m⊥l,则m⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,半径长度为2,则该几何体的表面积是(  )
A.17πB.18πC.20πD.28π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知an=($\frac{1}{3}$)n,把数列{an}的各项排成如图的三角形,记A(s,t)表示第s行的第t个数,则A(11,12)=(  )
A.($\frac{1}{3}$)67B.($\frac{1}{3}$)68C.($\frac{1}{3}$)112D.($\frac{1}{3}$)113

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设变量x,y满足约束条件$\left\{\begin{array}{l}{y≤3x-2}&{\;}\\{x-2y+1≤0}&{\;}\\{2x+y≤8}&{\;}\end{array}\right.$,则y-2x的最大值是(  )
A.-4B.-2C.-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.正方体ABCD-A'B'C'D'的棱长为a,连接A'C',A'D,A'B,BD,BC',C'D,得到一个三棱锥A'-BC'D.求:
(1)求异面直线A'D与C'D′所成的角;
(2)三棱锥A'-BC'D的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=x4+ax3+2x2+b(x∈R),其中a,b∈R.
(1)当a=-$\frac{10}{3}$时,讨论函数f(x)的单调性;
(2)若函数f(x)仅在x=0处有极值,求a的取值范围;
(3)若对于任意的a∈[-2,2],不等式f(x)≤1在[-1,0]上恒成立,求b的取值范围.

查看答案和解析>>

同步练习册答案