精英家教网 > 高中数学 > 题目详情
(本小题满分12分)如图,分别是正三棱柱的棱的中点,且棱.

(Ⅰ)求证:平面
(Ⅱ)在棱上是否存在一点,使二面角的大小为,若存在,求的长;若不存在,说明理由。
(1)见解析;(2)故棱上不存在使二面角的大小为的点.
本试题主要是考查线面平行的判定和二面角的求解综合运用。
(1)利用线面平行的判定定理,先证明线线平行,然后得到线面平行。
(2)在第二问中建立空间直角坐标系,利用平面的法向量,与法向量的夹角来表示二面角的平面角的求解。
【法一】(Ⅰ)在线段上取中点,连结.
,且,∴是平行四边形……2′
,又平面平面,∴平面.……4

又∵,∴二面角大于. ……11′
在棱上时,二面角总大于.
故棱上不存在使二面角的大小为的点. ……12′
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在底面为直角梯形的四棱锥P—ABCD中,
平面
(1)求证:平面PAC;
(2) 求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在中,上的高,沿折起,使 。
(Ⅰ)证明:平面ADB  ⊥平面BDC;
(Ⅱ)设E为BC的中点,求AE与DB夹角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.
(1)求证:EF∥平面CB1D1
(2)求证:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体中,
,点在棱上移动 

(Ⅰ)证明:
(Ⅱ)当的中点时,求点到面的距离;

 

 
(Ⅲ)等于何值时,二面角的大小为

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是空间两条直线,,是空间两个平面,则下列选项中不正确的是(  )
A.当时,“”是“”的必要不充分条件
B.当时,“”是“”的充分不必要条件
C.当时, “”是“”成立的充要条件
D.当时,“”是“”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两条相交直线a,b,a∥平面,则b与的位置关系是(     )
A.b平面B.b与平面相交
C.b∥平面D.b在平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知平面,则图中直角三角形的个数为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列条件能推出平面平面的是(    )
A.存在一条直线
B.存在一条直线
C.存在两条平行直线
D.存在两条异面直线

查看答案和解析>>

同步练习册答案