9£®Éè{an}Êǹ«²î²»ÎªÁãµÄµÈ²îÊýÁУ¬Âú×ãa6=5£¬a22+a32=a42+a52£¬ÊýÁÐ{bn}µÄͨÏʽΪbn=3n-11
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Èô´ÓÊýÁÐ{an}£¬{bn+4}Öа´´ÓСµ½´óµÄ˳ÐòÈ¡³öÏàͬµÄÏî¹¹³ÉÊýÁÐ{Cn}£¬Ö±½Óд³öÊýÁÐ{Cn}µÄͨÏʽ£»
£¨3£©¼Çdn=$\frac{b_n}{a_n}$£¬ÊÇ·ñ´æÔÚÕýÕûÊým£¬n£¨m¡Ùn¡Ù5£©£¬Ê¹µÃd5£¬dm£¬dn³ÉµÈ²îÊýÁУ¿Èô´æÔÚ£¬Çó³öm£¬nµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©É蹫²îΪd£¬Í¨¹ý$a_2^2-a_5^2=a_4^2-a_3^2$£¬ÒÔ¼°a6=5£¬Çó³öa1=-5£¬d=2£¬È»ºóÇó½â{an}µÄͨÏʽ£®
£¨2£©Çó³öÊýÁÐ{Cn}£¬Ê×ÏîΪ7£¬¹«²îΪ6£¬Ð´³ö½á¹û¼´¿É£®
£¨3£©¼ÙÉè´æÔÚÕýÕûÊým¡¢n£¬Ê¹µÃd5£¬dm£¬dn³ÉµÈ²îÊýÁУ¬ÍƳö${d_n}=\frac{3n-11}{2n-7}$£¬ÀûÓõȲîÖÐÏµÃ£º2m=13-$\frac{9}{n-2}$£¬Çó³öm£¬nµÄÖµ¼´¿É£®

½â´ð ½â£º£¨1£©É蹫²îΪd£¬Ôò$a_2^2-a_5^2=a_4^2-a_3^2$£¬ÓÉÐÔÖʵÃ$-3d£¨a_4^{\;}+a_3^{\;}£©=d£¨a_4^{\;}+a_3^{\;}£©$£¬
ÒòΪd¡Ù0£¬ËùÒÔ$a_4^{\;}+a_3^{\;}=0$£¬¼´2a1+5d=0£¬ÓÖÓÉa6=5µÃa1+5d=5£¬½âµÃa1=-5£¬d=2£¬
ËùÒÔ{an}µÄͨÏʽΪan=2n-7¡­£¨5·Ö£©
£¨2£©ÊýÁÐ{bn}µÄͨÏʽΪbn=3n-11£¬{an}µÄͨÏʽΪan=2n-7£¬
ËùÒÔ´ÓÊýÁÐ{an}£¬{bn+4}Öа´´ÓСµ½´óµÄ˳ÐòÈ¡³öÏàͬµÄÏî¹¹³ÉÊýÁÐ{Cn}£¬Ê×ÏîΪ7£¬¹«²îΪ6£¬
ËùÒÔCn=6n+1¡­£¨10·Ö£©
£¨3£©£¬¼ÙÉè´æÔÚÕýÕûÊým¡¢n£¬Ê¹µÃd5£¬dm£¬dn³ÉµÈ²îÊýÁУ¬Ôòd5+dn=2dm£®${d_n}=\frac{3n-11}{2n-7}$
ËùÒÔ$\frac{4}{3}$+$\frac{3n-11}{2n-7}$=$2¡Á\frac{3m-11}{2m-7}$£¬»¯¼òµÃ£º2m=13-$\frac{9}{n-2}$£®¡­£¨13·Ö£©
µ±n-2=-1£¬¼´n=1ʱ£¬m=11£¬·ûºÏÌâÒ⣻µ±n-2=1£¬¼´n=3ʱ£¬m=2£¬·ûºÏÌâÒâ
µ±n-2=3£¬¼´n=5ʱ£¬m=5£¨ÉáÈ¥£©£»      µ±n-2=9£¬¼´n=11ʱ£¬m=6£¬·ûºÏÌâÒ⣮
ËùÒÔ´æÔÚÕýÕûÊým=11£¬n=1£»m=2£¬n=3£»m=6£¬n=11
ʹµÃb2£¬bm£¬bn³ÉµÈ²îÊýÁУ®¡­£¨16·Ö£©

µãÆÀ ±¾Ì⿼²éÊýÁеÄÓ¦Óã¬ÊýÁÐÓ뺯ÊýÏà½áºÏ£¬¿¼²éת»¯Ë¼ÏëÒÔ¼°¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®£¨2x3-$\frac{1}{x}$£©8µÄÕ¹¿ªÊ½Öг£ÊýÏîÊÇ112£®£¨ÓÃÊý×Ö±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖª£º$tan¦Á=-\frac{1}{3}$£¬$cos¦Â=\frac{{\sqrt{5}}}{5}$£¬¦Á£¬¦Â¡Ê£¨0£¬¦Ð£©£®
£¨1£©Çótan£¨¦Á+¦Â£©µÄÖµ£»
£¨2£©Çóº¯Êý$f£¨x£©=\sqrt{2}sin£¨{x-¦Á}£©+cos£¨{x+¦Â}£©$µÄ×îÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=ax3+bx2-3x+dÔÚx=¡À1´¦È¡µÃ¼«Öµ£®
£¨1£©ÅжÏf£¨1£©ºÍf£¨-1£©ÊǺ¯Êýy=f£¨x£©µÄ¼«´óÖµ»¹ÊǼ«Ð¡Öµ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©Èôº¯Êýy=f£¨x£©ÓÐÈý¸öÁãµã£¬ÇódµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬a1=1£¬sn=n2an£¨n¡ÊN*£©£®
£¨1£©Çó S1£¬S2£¬S3£¬S4£»
£¨2£©²ÂÏë{an}µÄÇ°nÏîºÍ SnµÄ¹«Ê½£¬²¢ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Å×ÖÀÁ½Ã¶ÖʵصÄ÷»×Ó£¬µÃµ½µÄµãÊý·Ö±ðΪa£¬b£¬ÄÇôֱÏßbx+ay=1µÄбÂÊ$k¡Ý-\frac{2}{5}$µÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{12}$B£®$\frac{1}{6}$C£®$\frac{2}{5}$D£®$\frac{1}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÔÚ±¨ÃûµÄ5ÃûÄÐÉúºÍ3ÃûÅ®ÉúÖУ¬Ñ¡È¡5È˲μÓÊýѧ¾ºÈü£¬ÔòÄС¢Å®Éú¶¼ÓеĸÅÂÊΪ$\frac{55}{56}$£®£¨½á¹ûÓ÷ÖÊý±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{1{+log}_{2}£¨2-x£©£¨x¡Ü0£©}\\{f£¨x-2£©+1£¨x£¾0£©}\end{array}\right.$£¬Ôòf£¨-2£©+f£¨2£©=£¨¡¡¡¡£©
A£®3B£®6C£®5D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Ô­µã¹ØÓÚx-2y+1=0µÄ¶Ô³ÆµãµÄ×ø±êΪ£¨¡¡¡¡£©
A£®£¨$\frac{4}{5}$£¬-$\frac{2}{5}$£©B£®£¨-$\frac{2}{5}$£¬$\frac{4}{5}$£©C£®£¨$\frac{4}{5}$£¬$\frac{2}{5}$£©D£®£¨$\frac{2}{5}$£¬-$\frac{4}{5}$£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸