精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱ABCA1B1C1中,侧面ABB1A1是边长为2的菱形,且CACB1.

1)证明:面CBA1⊥面CB1A

2)若∠BAA160°,A1CBCBA1,求点C到平面A1BC1的距离.

【答案】1)证明见解析;(2

【解析】

1)设A1BAB1O,连接CO.证明A1BAB1COAB1,得到AB1⊥面CA1B,然后证明面CBA1⊥面CB1A.

2)说明线段CH的长就是点C到平面A1BC1的距离.然后转化求解即可.

1)证明:设A1BAB1O,连接CO.因为侧面ABB1A1是菱形,所以A1BAB1

又因为CACB1,所以COAB1,又A1BCOO

所以AB1⊥面CA1B,又AB1CAB1,所以面CBA1⊥面CB1A.

2)在菱形ABB1A1中,因为∠BAA160°,

所以△ABA1是等边三角形,可得A1B2,所以BC2BB1

所以侧面BB1C1C是菱形,故CB1C1B,(*

在等边三角形CA1B中,A1BCO,又A1BAB1,且COAB1O

所以A1B⊥面CAB1,又CB1CAB1,所以CB1A1B

结合(*)以及A1BC1BBCB1⊥面A1C1B,设CB1C1BH

则线段CH的长就是点C到平面A1BC1的距离.

经计算得

所以,即点C到平面A1BC1的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程是,以极点为原点,极轴为轴非负半轴建立平面直角坐标系,直线的参数方程为为参数).

1)写出曲线的直角坐标方程和直线的普通方程;

2)在(1)中,设曲线经过伸缩变换得到曲线,设曲线上任意一点为,当点到直线的距离取最大值时,求此时点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有一个“引葭赴岸”问题:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”其意思为“今有水池1丈见方(即尺),芦苇生长在水的中央,长出水面的部分为1.将芦苇向池岸牵引,恰巧与水岸齐接(如图所示).试问水深、芦苇的长度各是多少?假设,现有下述四个结论:

①水深为12尺;②芦苇长为15尺;③;④.

其中所有正确结论的编号是(

A.①③B.①③④C.①④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点的直线l与抛物线E)交于BC两点,且A为线段的中点.

1)求抛物线E的方程;

2)已知直线与直线l平行,过直线上任意一点P作抛物线E的两条切线,切点分别为MN,是否存在这样的实数m,使得直线恒过定点A?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)若曲线上点处的切线过点,求函数的单调减区间;

(II)若函数在区间内无零点,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】槟榔原产于马来西亚,中国主要分布在云南、海南及台湾等热带地区,亚洲热带地区广泛栽培.槟榔是重要的中药材,南方一些少数民族还有将果实作为一种咀嚼嗜好品,但其被世界卫生组织国际癌症研究机构列为致癌物清单Ⅰ类致癌物.云南某民族中学为了解两个少数民族班的学生咀嚼槟榔的情况,分别从这两个班中随机抽取5名学生进行调查,经他们平均每周咀嚼槟榔的颗数作为样本,绘制成如图所示的茎叶图(图中的茎表示十位数字,叶表示个位数字).

(1)你能否估计哪个班的学生平均每周咀嚼槟榔的颗数较多?

(2)在被抽取的10名学生中,从平均每周咀嚼槟榔的颗数不低于20颗的学生中随机抽取3名学生,求抽到班学生人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点,直线交椭圆于不同的两点,设线段的中点为

1求椭圆的方程;

2的面积为其中为坐标原点时,试问:在坐标平面上是否存在两个定点,使得当直线运动时,为定值?若存在,求出点的坐标和定值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线方程是.

1)求ab的值;

2)若对任意,都有恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中,,点的中点,点为线段垂直平分线上的一点,且,固定边,在平面内移动顶点,使得的内切圆始终与切于线段的中点,且在直线的同侧,在移动过程中,当取得最小值时,的面积为(

A.B.C.D.

查看答案和解析>>

同步练习册答案