精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,是以PF为底边的等腰三角形,PA平行于x轴,点,且点P在直线上运动.记点A的轨迹为C.

1)求C的方程.

2)直线AFC的另一个交点为B,等腰底边的中线与直线的交点为Q,试问的面积是否存在最小值?若存在,求出该值;若不存在,请说明理由.

【答案】1;(2)存在,值为.

【解析】

1)根据抛物线的定义得轨迹为抛物线(去除顶点),从而可得其方程;

2)设直线AB的方程为,直线方程代入抛物线方程整理可得,由抛物线的焦点弦弦公式求得弦长,再求出点到直线的距离,求得三角形面积(表示为的函数),由函数性质可得最小值.

1)由题意得PA与直线垂直,且

故点A到定点的距离和到直线的距离相等,

由抛物线的定义可得,C是以为焦点,

直线为准线的抛物线(除原点O),

C的方程为.

2)存在.

设直线AB的方程为

,得

.

因为,所以

. 又P的坐标为

所以PF的中点为

底边的中线所在的直线方程为.

,得

Q的坐标为. 点Q到直线AB的距离

所以

故当时,取得最小值4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在一次篮球投篮测试中,记分规则如下(满分为分):①每人可投篮次,每投中一次记分;②若连续两次投中加分,连续三次投中加分,连续四次投中加分,以此类推,…,七次都投中加.假设某同学每次投中的概率为,各次投篮相互独立,则:(1)该同学在测试中得分的概率为______;(2)该同学在测试中得分的概率为______..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动没有兴趣额.

(1)完成列联表,并回答能否有的把握认为“对冰球是否有兴趣与性别有关”?

有兴趣

没兴趣

合计

55

合计

(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率.

附表:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对一堆100粒的石子进行如下操作每次任选石子数大于1的一堆任意分成不空的两堆,直到每堆1(100为止证明

(1)无论如何操作,必有某个时刻存在20堆,其石子总数为60;

(2)可以进行适当地操作使得任何时刻不存在19堆,其石子总数为60.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,求实数取值的集合;

(Ⅱ)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线.

1)点是该抛物线上任一点,求证:过点的抛物线的切线方程为

2)过点作该抛物线的两条切线,切点分别为,设的面积为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线过点,其参数方程为为参数,),以为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)求已知曲线和曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】4位同学在同一天的上午、下午参加身高与体重立定跳远肺活量握力台阶五个项目的测试,每位同学测试两个项目,分别在上午和下午,且每人上午和下午测试的项目不能相同.若上午不测握力,下午不测台阶,其余项目上午、下午都各测试一人,则不同的安排方式的种数为( )

A.264B.72C.266D.274

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某投资公司在2020年年初准备将1000万元投资到“低碳”项目上,现有两个项目供选择:

项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利40%,也可能亏损10%,且这两种情况发生的概率分别为

项目二:通信设备据市场调研,投资到该项目上,到年底可能获利50%,可能损失30%,也可能不赔不赚,且这三种情况发生的概率分别为.针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.

查看答案和解析>>

同步练习册答案