精英家教网 > 高中数学 > 题目详情

【题目】已知动圆M与直线相切,且与圆N外切

1)求动圆圆心M的轨迹C的方程;

2)点O为坐标原点,过曲线C外且不在y轴上的点P作曲线C的两条切线,切点分别记为AB,当直线的斜率之积为时,求证:直线过定点.

【答案】1;(2)见解析

【解析】

1)直接利用直线与圆的位置关系式,圆和圆的位置关系式的应用求出结果.

2)利用直线与曲线的相切和一元二次方程根和系数关系式的应用求出结果.

1)设动圆圆心Mxy),

由于圆M与直线y=-1相切,且与圆N外切.

利用圆心到直线的距离和圆的半径和圆心距之间的关系式,

可知C的轨迹方程为:

2)设直线

因为,所以两条切线的斜率分别为

则直线的方程是

直线的方程是.

两个方程联立得P点坐标为

,由联立得:

故直线过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某生态农场有一矩形地块,地块内有一半圆形池塘(如图所示),其中百米,百米,半圆形池塘的半径为1百米,圆心与线段的中点重合,半圆与的左侧交点为.该农场计划分别在上各选一点,修建道路,要求与半圆相切.

1)若,求该道路的总长;

2)若为观光道路,修建费用是4万元/百米,为便道,修建费用是1万元/百米,求修建观光道路与便道的总费用的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12如图三棱柱ABC-A1B1C1,CA=CBAB=A A1BA A1=60°.

)证明ABA1C;

)若平面ABC平面AA1B1B,AB=CB直线A1C 与平面BB1C1C所成角正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(多选题)下列说法中,正确的命题是(

A.已知随机变量服从正态分布,则

B.以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则的值分别是0.3

C.已知两个变量具有线性相关关系,其回归直线方程为,若,则

D.若样本数据的方差为2,则数据的方差为16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设二阶矩阵A.

1 A1

2 若曲线C在矩阵A对应的变换作用下得到曲线C6x2y21,求曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,人们支付方式发生巨大转变,使用移动支付购买商品已成为一部分人的消费习惯,某企业为了解该企业员工两种移动支付方式的使用情况,从全体员工中随机抽取了100人,统计了他们在某个月的消费支出情况,发现样本中两种支付方式都没有使用过的有5人;使用了两种方式支付的员工,支付金额和相应人数分布如下表,依据数据估算:若从该公司随机抽取1名员工,则该员工在该月两种支付方式都使用过的概率为_______________

支付金额(元)

支付方式

大于2000

使用

18

29

23

使用

10

24

21

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市一所高中为备战即将举行的全市羽毛球比赛,学校决定组织甲、乙两队进行羽毛球对抗赛实战训练.每队四名运动员,并统计了以往多次比赛成绩,按由高到低进行排序分别为第一名、第二名、第三名、第四名.比赛规则为甲、乙两队同名次的运动员进行对抗,每场对抗赛都互不影响,当甲、乙两队的四名队员都进行一次对抗赛后称为一个轮次.按以往多次比赛统计的结果,甲、乙两队同名次进行对抗时,甲队队员获胜的概率分别为.

(1)进行一个轮次对抗赛后一共有多少种对抗结果?

(2)计分规则为每次对抗赛获胜一方所在的队得1分,失败一方所在的队得0分,设进行一个轮次对抗赛后甲队所得分数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

1)设,假设上递减,求的取值范围;

2)假设,求证:.

3)是否存在实数,使得恒成立,假设存在,求出的取值范围,假设不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴的建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程;

2)若点与点分别为曲线动点,求的最小值,并求此时的点坐标.

查看答案和解析>>

同步练习册答案