精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两人分别从4种不同的图书中任选2本阅读,则甲、乙两人选的2本恰好相同的概率为(

A.B.C.D.

【答案】C

【解析】

利用列举法求出“甲从4种不同的图书中任选2本阅读”所包含的基本事件数,进而求出“甲、乙两人分别从4种不同的图书中任选2本阅读”包含的基本事件总数,以及“甲、乙两人选的2本恰好相同”包含的基本事件数,根据古典概型的概率计算公式,可求概率.

表示4种不同的图书,则事件“甲从4种不同的图书中任选2本阅读”所包含的基本事件有:,共种,

其中,事件“甲、乙两人分别从4种不同的图书中任选2本阅读”所包含的基本事件数为

记“甲、乙两人选的2本恰好相同”为事件,则事件包含的基本事件数为

.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地区城乡居民储蓄存款年底余额(单位:亿元)如图所示,下列判断一定不正确的是(

A.城乡居民储蓄存款年底余额逐年增长

B.农村居民的存款年底余额所占比重逐年上升

C.2019年农村居民存款年底总余额已超过了城镇居民存款年底总余额

D.城镇居民存款年底余额所占的比重逐年下降

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】角谷猜想,也叫猜想,是由日本数学家角谷静夫发现的,是指对于每一个正整数,如果它是奇数,则对它乘3再加1;如果它是偶数,则对它除以2,如此循环最终都能够得到1.如:取,根据上述过程,得出63105168421,共9个数.若,根据上述过程得出的整数中,随机选取两个不同的数,则这两个数都是偶数的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定下列四个命题,其中真命题是(

A.垂直于同一直线的两条直线相互平行

B.若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行

C.垂直于同一平面的两个平面相互平行

D.若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若无穷数列满足:存在,对任意的,都有为常数),则称具有性质

1)若无穷数列具有性质,且,求的值

2)若无穷数列是等差数列,无穷数列是公比为正数的等比数列,,判断是否具有性质,并说明理由.

3)设无穷数列既具有性质,又具有性质,其中互质,求证:数列具有性质

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,的中点,的交点.将沿折起到的位置,如图

)证明:平面

)若平面平面,求平面与平面夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆的参数方程为为参数),与圆关于直线对称的圆为.以原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程是

1)设直线轴和轴的交点分别为为圆上的任意一点,求的最大值.

2)过点且与直线平行的直线交圆两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国农历的二十四节气是凝结着中华民族的智慧与传统文化的结晶,二十四节气歌是以春、夏、秋、冬开始的四句诗,20161130日,二十四节气正式被联合国教科文组织列入人类非物质文化遗产,也被誉为中国的第五大发明.某小学三年级共有学生500名,随机抽查100名学生并提问二十四节气歌,只能说出春夏两句的有45人,能说出春夏秋三句及其以上的有32人,据此估计该校三年级的500名学生中,对二十四节气歌只能说出第一句或一句也说不出的大约有(

A.69B.84C.108D.115

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数(abR).

1)当b=﹣1时,函数有两个极值,求a的取值范围;

2)当ab1时,函数的最小值为2,求a的值;

3)对任意给定的正实数ab,证明:存在实数,当时,.

查看答案和解析>>

同步练习册答案