精英家教网 > 高中数学 > 题目详情
规定
C
m
x
=
x(x-1)…(x-m+1)
m!
,其中x∈R,m是正整数,且Cx0=1,这是组合数Cnm(n、m是正整数,且m≤n)的一种推广.
(1) 求C-155的值;
(2)组合数的两个性质:①Cnm=Cnn-m;②Cnm+Cnm-1=Cn+1m.是否都能推广到Cxm(x∈R,m是正整数)的情形?
若能推广,则写出推广的形式并给出证明;若不能,则说明理由.
分析:(1)根据所给的组合数公式,写出C-155的值,这里与平常所做的题目不同的是组合数的下标是一个负数,在本题的新定义下,按照一般组合数的公式来用.
(2)Cnm=Cnn-m不能推广到Cxm的情形,举出两个反例
C
1
2
C
2
-1
2
无意义;Cnm+Cnm-1=Cn+1m能推广到Cxm的情形,可以利用组合数的公式来证明,证明的方法同没有推广之情相同.
解答:解:(1)C-155=
-15(-16)(-17)(-18)(-19)
1•2•3•4•5
=-11628;
(2)Cnm=Cnn-m不能推广到Cxm的情形,
例如
C
1
2
C
2
-1
2
无意义;
Cnm+Cnm-1=Cn+1m能推广到Cxm的情形,
Cxm+Cxm-1=
x(x-1)(x-m+1)
m !
+
x(x-1)(x-m+2)
(m-1) !

=
x(x-1)(x-m+1)+x(x-1)(x-m+2)•m
m !

=
x(x-1)(x-m+2)(x-m+1+m)
m !

=
(x+1)x(x-1)(x-m+2)
m !
=Cx+1m
点评:本题考查组合数公式,不是在一般的情况下应用组合数公式,而是对于组合数公式推广使用,是一个中档题,题目解起来容易出错.这种题目对于学生帮助不大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

规定Cmx=
x(x-1)…(x-m+1)
m!
,其中x∈R,m是正整数,且C0x=1,这是组合数Cmn(n、m是正整数,且m≤n)的一种推广.
(1)求C3-15的值;
(2)设x>0,当x为何值时,
C
3
x
(C
1
x
)2
取得最小值?
(3)组合数的两个性质;
①Cmn=Cn-mm. ②Cmn+Cm-1n=Cmn+1
是否都能推广到Cmx(x∈R,m是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.
变式:规定Axm=x(x-1)…(x-m+1),其中x∈R,m为正整数,且Ax0=1,这是排列数Anm(n,m是正整数,且m≤n)的一种推广.
(1)求A-153的值;
(2)排列数的两个性质:①Anm=nAn-1m-1,②Anm+mAnm-1=An+1m.(其中m,n是正整数)是否都能推广到Axm(x∈R,m是正整数)的情形?若能推广,写出推广的形式并给予证明;若不能,则说明理由;
(3)确定函数Ax3的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

规定
C
m
x
=
x(x-1)…(x-m+1)
m!
,其中x∈R,m是正整数,且
C
0
x
=1
,这是组合数
C
m
n
(n、m是正整数,且m≤n)的一种推广.
(1)求
C
3
-15
的值;
(2)设x>0,当x为何值时,
C
3
x
(
C
1
x
)
2
取得最小值?
(3)组合数的两个性质;①
C
m
n
=
C
n-m
n
;②
C
m
n
+
C
m-1
n
=
C
m
n+1
.是否都能推广到
C
m
x
(x∈R,m是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

规定
C
m
x
=
x(x-1)…(x-m+1)
m!
,其中x∈R,m是正整数,且CX0=1.这是组合数Cnm(n,m是正整数,且m≤n)的一种推广.
(1)求C-153的值;
(2)组合数的两个性质:①Cnm=Cnn-m;②Cnm+Cnm-1=Cn+1m是否都能推广到Cxm(x∈R,m∈N*)的情形?若能推广,请写出推广的形式并给予证明;若不能请说明理由.
(3)已知组合数Cnm是正整数,证明:当x∈Z,m是正整数时,Cxm∈Z.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

规定
Cmx
=
x(x-1)…(x-m+1)
m!
,其中x∈R,m是正整数,且CX0=1.这是组合数Cnm(n,m是正整数,且m≤n)的一种推广.
(1)求C-153的值;
(2)组合数的两个性质:①Cnm=Cnn-m;②Cnm+Cnm-1=Cn+1m是否都能推广到Cxm(x∈R,m∈N*)的情形?若能推广,请写出推广的形式并给予证明;若不能请说明理由.
(3)已知组合数Cnm是正整数,证明:当x∈Z,m是正整数时,Cxm∈Z.

查看答案和解析>>

同步练习册答案