精英家教网 > 高中数学 > 题目详情
7.如图,在矩形ABCD中,$AB=\frac{3}{2},BC=2$,沿BD将矩形ABCD折叠,连接AC,所得三棱锥A-BCD的正视图和俯视图如图所示,则三棱锥A-BCD的侧视图的面积为(  )
A.$\frac{9}{25}$B.$\frac{12}{5}$C.$\frac{18}{25}$D.$\frac{36}{25}$

分析 由题意可知平面ABD⊥平面BCD,三棱锥A-BCD侧视图为等腰直角三角形,两条直角边分别是过B和D向AC所做的垂线,做出直角边的长度,得到侧视图的面积.

解答 解:由正视图和俯视图可知平面ABD⊥平面BCD.
三棱锥A-BCD侧视图为等腰直角三角形,两条直角边分别是过A和C向BD所做的垂线,

由等面积可得直角边长为$\frac{\frac{3}{2}×2}{\sqrt{(\frac{3}{2})^{2}+{2}^{2}}}$=$\frac{6}{5}$,
∴侧视图面积为$\frac{1}{2}$×$\frac{6}{5}$×$\frac{6}{5}$=$\frac{18}{25}$.
故选:C

点评 本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知F1和F2是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,O为坐标原点,点P(-1,$\frac{\sqrt{2}}{2}$)在该椭圆上,且PF1⊥x轴.
(1)求椭圆的标准方程;
(2)若过点A(2,0)作直线l交椭圆于不同的两点B,C,证明:不存在直线l,使得|BF2|=|CF2|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A,B,C所对的边分别为a,b,c,向量$\overrightarrow{m}$=(2,cos2C-1),$\overrightarrow{n}$=(sin2$\frac{A+B}{2}$,1)且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求角C的大小;
(2)如果△ABC的外接圆的半径为1,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设正数a,b满足log2a=log3b,则下列结论中,不可能成立的是(  )
A.1<a<bB.0<b<a<1C.a=bD.1<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=2sin(2x+\frac{π}{6})$.
(Ⅰ)求函数f(x)在区间$[-\frac{π}{6},\frac{π}{6}]$上的最大值和最小值;
(Ⅱ)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow{m}$=($\sqrt{3}$cos$\frac{x}{2}$,cos$\frac{x}{2}$),$\overrightarrow{n}$=(sin$\frac{x}{2}$,cos$\frac{x}{2}$),函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)在锐角△ABC中,已知A=$\frac{π}{3}$,求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.等差数列{an}中,a3=7,a5=a2+6,则{an}的通项公式为an=2n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.己知函数f(x)=x-a1nx(a≠0,a∈R).
(Ⅰ)讨论f(x)的极值;
(Ⅱ)设A(x1,f(x1)),B(x2,f(x2))(0<x1<x2)是曲线y=f(x)上不同两点,若存在t∈(x1,x2),使得y=f(x)在(t,f(t))处的切线与直线AB平行,求证:t<$\frac{{x}_{1}+{x}_{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=$\sqrt{sinx-\frac{1}{2}}$,x∈(0,2π)的定义域是[$\frac{π}{6}$,$\frac{5π}{6}$].

查看答案和解析>>

同步练习册答案